行业信息

  • 直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分. 现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……). [1] 数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用. 具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学). 就纵度而言,在数学各自领域上的探索亦越发深入.
    数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思.数学术语亦包括如同胚及可积性等专有名词.但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”. 严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或“证明”,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理。数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨.
    贝赫(Birch)和斯维讷通—戴尔(Swinnerton-Dyer)猜想 数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。
    基础数学是多数古文明的教育系统的一部分,包括古希腊,罗马帝国,吠陀社会和古埃及。在多数情况下,只有足够高地位,财富或等级的男性孩童才能接受正规教育。 数学教育图书 数学教育图书 在柏拉图把文科分成三学科和四学科的划分中,四学科包括数学的算术和几何领域。这个结构在中世纪欧洲所发展的经典教育的体系得到了延续。几何的教育基于欧几里得的原本。商业的学徒,如石匠,商人和借贷者需要学习和他们的行业相关的这种实用数学。 第一本英语的数学教科书由Robert Recorde出版,从1540年的艺术的基础(The Grounde of Artes)开始。 在文艺复兴时期,数学的学术地位下降了,因为它和手工业和贸易紧密相关。虽然在欧洲的大学里继续教授数学,它被视为自然哲学,形而上学和道德哲学的辅助。 这个趋势在十七世纪得到某种逆转,阿伯丁大学在1613年建立数学主席职位,随后有牛津大学在1619年建立几何主席职位和剑桥大学在1662年设立的卢卡逊教授。但是,数学一般不在大学之外教授。例如牛顿在他在1661年进入剑桥三一学院之前没有受过正规数学教育。 在十八世纪和十九世纪,工业革命导致城市人口大量增加。基本的数字技能,如描述时间,数钱和简单算术,称为新的城市生活的基本能力。在新的公共教育系统中,数学成了从幼年开始的课程的中心部分。 到二十世纪,数学成了所有发达国家的核心课程的一部分。但是,多样和变化着的关于数学教育的目的的思想导致所采用的内容和方法几乎没有任何整体上的一致性。
    网店第1年
    35097984
  • 为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托尔(1845—1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献。 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论、测度论、拓扑学及数理科学中必不可少的工具。20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”。
    数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思.数学术语亦包括如同胚及可积性等专有名词.但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”. 严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或“证明”,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理。数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨.
    庞加莱(Poincare)猜想(已经被证明) 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
    数学教育是一种社会文化现象,其社会性决定了数学教育要与时俱进,不断创新.数学教育中的教育目标、教育内容、教育技术等一系列问题都会随着社会的进步而不断变革与发展.数学教育改革的背景,至少有来自于九个方面的考虑:知识经济、社会关系、家庭压力、国际潮流、考试改革、科教兴国、深化素质教育、普及义务教育、科技进步。
    网店第1年
    35097984
  • 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果.现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。
    数学教育是一种社会文化现象,其社会性决定了数学教育要与时俱进,不断创新.数学教育中的教育目标、教育内容、教育技术等一系列问题都会随着社会的进步而不断变革与发展.数学教育改革的背景,至少有来自于九个方面的考虑:知识经济、社会关系、家庭压力、国际潮流、考试改革、科教兴国、深化素质教育、普及义务教育、科技进步。
    各校建系初期,实施的数学教育差别很大,后来教育部才对必修课作了原则规定。主要授课教师多半是归国留学生,所用教材,除少数自编者外,多数是外文本或其中译本。从课程设置看,高等院校的数学教育水平不低,但各校的教学质量差异不小。数学系学生,每校每年级一般都只有少数几个人。 1931年清华大学开始培养数学研究生,后继者有浙江大学、中央大学、北京大学以及抗日战争期间由北京大学、清华大学、南开大学组成的(昆明)西南联合大学,数学的研究工作也比较集中在这几所学校。其中清华大学、浙江大学、武汉大学等还出版了刊物,登载数学论文。 除了在国内培养数学人才外,还通过一些渠道派遣留学生,例如利用中美庚款、中英庚款和中法庚款公开考试派送的留学生中,都有数学名额。30年代还曾邀请少数外国数学家如 W.F.奥斯古德、N.维纳、J.(-S.)阿达马等来华讲学。 从辛亥革命到中华人民共和国成立,是中国现代数学教育的奠基时期,不少老一辈数学家如姜立夫、熊庆来、陈建功等克服重重困难,艰苦创业,培养了一批数学人才;数量虽然不多,但对于使现代数学在中国土壤上生根,作出了宝贵贡献。
    中华人民共和国成立后,在人民政府的集中领导下,采用了苏联的教育制度,数学教育也经历了巨大变革。经过1952年的院系调整,师范院校和综合大学都设立了数学系,全国有了统一制订的教学计划和教学大纲,广泛引进了苏联教材,各校必修课的设置及其内容规范化了,保证了一定水平。数学基础课一般都设了习题课,对学生的帮助更为具体。师范院校的数学专业在基础课的设置上,与综合大学的数学专业相近,并增设教育学、心理学、数学教学法及教育实习等课和教学环节。综合大学的数学专业一度在最后一年至一年半的时间里分为若干专门组,如代数、数论、几何、拓扑、函数论、泛函分析、微分方程、概率论与数理统计等,学生能接触到一些现代数学的前沿工作。后来专门组撤销,课程更多样化了。
    网店第1年
    35097984
  • 亚里士多德把数学定义为“数量数学",这个定义直到18世纪。从19世纪开始,数学研究越来越严格,开始涉及与数量和量度无明确关系的群论和投影几何等抽象主题,数学家和哲学家开始提出各种新的定义。这些定义中的一些强调了大量数学的演绎性质,一些强调了它的抽象性,一些强调数学中的某些话题。即使在专业人士中,对数学的定义也没有达成共识。数学是否是艺术或科学,甚至没有一致意见。[8]许多专业数学家对数学的定义不感兴趣,或者认为它是不可定义的。有些只是说,“数学是数学家做的。” 数学定义的三个主要类型被称为逻辑学家,直觉主义者和形式主义者,每个都反映了不同的哲学思想学派。都有严重的问题,没有人普遍接受,没有和解似乎是可行的。 数学逻辑的早期定义是本杰明·皮尔士(Benjamin Peirce)的“得出必要结论的科学”(1870)。在Principia Mathematica,Bertrand Russell和Alfred North Whitehead提出了被称为逻辑主义的哲学程序,并试图证明所有的数学概念,陈述和原则都可以用符号逻辑来定义和证明。数学的逻辑学定义是罗素的“所有数学是符号逻辑”(1903)。 直觉主义定义,从数学家L.E.J. Brouwer,识别具有某些精神现象的数学。直觉主义定义的一个例子是“数学是一个接着一个进行构造的心理活动”。直观主义的特点是它拒绝根据其他定义认为有效的一些数学思想。特别是,虽然其他数学哲学允许可以被证明存在的对象,即使它们不能被构造,但直觉主义只允许可以实际构建的数学对象。
    P(多项式算法)问题对 NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。 与此类似的是,如果某人告诉你,数字13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。
    庞加莱(Poincare)猜想(已经被证明) 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
    黎曼(Riemann)假设 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
    网店第1年
    35097984
  • 直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分. 现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……). [1] 数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用. 具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学). 就纵度而言,在数学各自领域上的探索亦越发深入.
    数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思.数学术语亦包括如同胚及可积性等专有名词.但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”. 严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或“证明”,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理。数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨.
    绝大部分的历史时期,数学教育的标准是地域性的,由不同的学校或教师根据学 《从数学教育到教育数学》 《从数学教育到教育数学》 生的水平和兴趣来设置。 在现代,有一种趋势是建立地区或国家标准,通常隶属于更广泛的学校教学大纲。例如在英国,数学教育的标准是英国国家教育大纲的一部分。在美国,美国数学教师国家委员会制定了一系列文档,最近的有学校数学的原则和标准,为学校数学的总体目标达成了一致。更具体的教学标准一般在州一级制定 - 譬如在加利福尼亚,加州教育理事会为数学教育制定了标准
    任何特定环境下的方法很大程度上由相关的教育系统所设定的目标所决定。教授数学的方法包括: 经典教育 -中世纪的经典教育大纲中的数学教育通常基于欧几里得原本,它被作为演绎推理的范式来教授。 死记硬背 - 通过重复和记忆来教授数学结果,定义和概念。通常用于乘法表。 习题 - 通过完成大量同类的练习来传授数学技巧,例如加带分数或者解二次方程。例如,古氏积木(Cuisenaire rods)来教授分数。 问题求解- 通过给学生无标准答案,不同寻常的,和有时候无解的问题来培养数学的智力,创造力和启发式思考。问题的范围可以从词问题到像国际数学奥林匹克竞赛这样的国际数学竞赛问题。 新数学 - 一种专注于集合论这样的抽象概念而不是实际应用的教授数学的方法。 历史方法 - 教授在一个历史,社会和文化背景下数学的发展过程。比纯粹抽象的方式提供了更多的人文乐趣。 这些方法不是所有的,而且任何数学教育系统很可能包含很多不同的方法。
    网店第1年
    35097984
  • 许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。
    数学教育是研究数学教学的实践和方法的学科。而且,数学教育工作者也关注促进这种实践的工具及其研究的发展。数学教育是现代社会激烈争论的主题之一。这个术语有个歧义,它既指各地的教室里的实践,也指新生的一个学科,它有自己的期刊,会议,等等。这方面最重要的国际组织是数学教育国际委员会(the International Commission on Mathematical Instruction)。
    基础数学是多数古文明的教育系统的一部分,包括古希腊,罗马帝国,吠陀社会和古埃及。在多数情况下,只有足够高地位,财富或等级的男性孩童才能接受正规教育。 数学教育图书 数学教育图书 在柏拉图把文科分成三学科和四学科的划分中,四学科包括数学的算术和几何领域。这个结构在中世纪欧洲所发展的经典教育的体系得到了延续。几何的教育基于欧几里得的原本。商业的学徒,如石匠,商人和借贷者需要学习和他们的行业相关的这种实用数学。 第一本英语的数学教科书由Robert Recorde出版,从1540年的艺术的基础(The Grounde of Artes)开始。 在文艺复兴时期,数学的学术地位下降了,因为它和手工业和贸易紧密相关。虽然在欧洲的大学里继续教授数学,它被视为自然哲学,形而上学和道德哲学的辅助。 这个趋势在十七世纪得到某种逆转,阿伯丁大学在1613年建立数学主席职位,随后有牛津大学在1619年建立几何主席职位和剑桥大学在1662年设立的卢卡逊教授。但是,数学一般不在大学之外教授。例如牛顿在他在1661年进入剑桥三一学院之前没有受过正规数学教育。 在十八世纪和十九世纪,工业革命导致城市人口大量增加。基本的数字技能,如描述时间,数钱和简单算术,称为新的城市生活的基本能力。在新的公共教育系统中,数学成了从幼年开始的课程的中心部分。 到二十世纪,数学成了所有发达国家的核心课程的一部分。但是,多样和变化着的关于数学教育的目的的思想导致所采用的内容和方法几乎没有任何整体上的一致性。
    从19世纪20年代后期起,浙江大学数学系就开始采用讨论班的形式来培养学生独立工作能力和从事科研工作能力;其他如西南联合大学也曾采用过。到了50年代,结合专门组教学,这种作法得到进一步推广,各主要大学数学系都逐步开展了科学研究工作,并招收了研究生。由于国内培养的数学人才不断增加,教师队伍逐渐改变了过去主要依靠归国留学生的局面,由教育部组织编写的以及个人编写的教材也逐渐取代了外国教材,它们一般较结合本国实际。1957年以后,一些学校开展了应用数学方面的研究,增设了计算数学专业或专门组,开设了如运筹学等课程,概率统计等课程的开设更为普遍,培养了有关方面的人才。理、工等科系的学生,一般也学习一定份量的高等数学课程。 以上情况表明,中华人民共和国成立以后,数学教育在数量和质量上都发生了显著变化,逐步发展提高。但也存在一些问题,如:必修课太重,不少课程要求过专过高,教学制度又过分要求划一,未能因材施教,导致学生学习负担过重,基础不牢,加以对理论和实践有时理解得不全面,工作中有摇摆,使数学教育的发展受到影响。尽管如此,这段时期的数学教育成就还是很大的。一般数学人才的培养已能立足于国内了。
    网店第1年
    35097984
  • 我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前,数学是用文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于人们而言更便于操作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。
    纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶—斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。
    任何特定环境下的方法很大程度上由相关的教育系统所设定的目标所决定。教授数学的方法包括: 经典教育 -中世纪的经典教育大纲中的数学教育通常基于欧几里得原本,它被作为演绎推理的范式来教授。 死记硬背 - 通过重复和记忆来教授数学结果,定义和概念。通常用于乘法表。 习题 - 通过完成大量同类的练习来传授数学技巧,例如加带分数或者解二次方程。例如,古氏积木(Cuisenaire rods)来教授分数。 问题求解- 通过给学生无标准答案,不同寻常的,和有时候无解的问题来培养数学的智力,创造力和启发式思考。问题的范围可以从词问题到像国际数学奥林匹克竞赛这样的国际数学竞赛问题。 新数学 - 一种专注于集合论这样的抽象概念而不是实际应用的教授数学的方法。 历史方法 - 教授在一个历史,社会和文化背景下数学的发展过程。比纯粹抽象的方式提供了更多的人文乐趣。 这些方法不是所有的,而且任何数学教育系统很可能包含很多不同的方法。
    由于各国的情况存在诸多差异,在高中数学课程的具体安排上,各国有不同的着重点。例如,英国的高级水平(A-level)数学,主要面向对数学要求较高的理工大学考生,此种数学班的学生需要学习纯数学,统计学,理论力学等内容。韩国开办面向天才生的理科高中,密码学和高等字符串的理论理科高中的学习内容。印度有良好的计算技能传统,甚至文盲的蔬菜小贩也有出色的算术运算技能。为了保持这一善于计算的传统,他们在当今数学教学中仍然不允许使用计算器。
    网店第1年
    35097984
  • 数学(mathematics或maths,其英文来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。 而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
    数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果.现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。
    纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶—斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。
    由于各国的情况存在诸多差异,在高中数学课程的具体安排上,各国有不同的着重点。例如,英国的高级水平(A-level)数学,主要面向对数学要求较高的理工大学考生,此种数学班的学生需要学习纯数学,统计学,理论力学等内容。韩国开办面向天才生的理科高中,密码学和高等字符串的理论理科高中的学习内容。印度有良好的计算技能传统,甚至文盲的蔬菜小贩也有出色的算术运算技能。为了保持这一善于计算的传统,他们在当今数学教学中仍然不允许使用计算器。
    网店第1年
    35097984
  • 数学(mathematics或maths,其英文来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。 而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
    亚里士多德把数学定义为“数量数学",这个定义直到18世纪。从19世纪开始,数学研究越来越严格,开始涉及与数量和量度无明确关系的群论和投影几何等抽象主题,数学家和哲学家开始提出各种新的定义。这些定义中的一些强调了大量数学的演绎性质,一些强调了它的抽象性,一些强调数学中的某些话题。即使在专业人士中,对数学的定义也没有达成共识。数学是否是艺术或科学,甚至没有一致意见。[8]许多专业数学家对数学的定义不感兴趣,或者认为它是不可定义的。有些只是说,“数学是数学家做的。” 数学定义的三个主要类型被称为逻辑学家,直觉主义者和形式主义者,每个都反映了不同的哲学思想学派。都有严重的问题,没有人普遍接受,没有和解似乎是可行的。 数学逻辑的早期定义是本杰明·皮尔士(Benjamin Peirce)的“得出必要结论的科学”(1870)。在Principia Mathematica,Bertrand Russell和Alfred North Whitehead提出了被称为逻辑主义的哲学程序,并试图证明所有的数学概念,陈述和原则都可以用符号逻辑来定义和证明。数学的逻辑学定义是罗素的“所有数学是符号逻辑”(1903)。 直觉主义定义,从数学家L.E.J. Brouwer,识别具有某些精神现象的数学。直觉主义定义的一个例子是“数学是一个接着一个进行构造的心理活动”。直观主义的特点是它拒绝根据其他定义认为有效的一些数学思想。特别是,虽然其他数学哲学允许可以被证明存在的对象,即使它们不能被构造,但直觉主义只允许可以实际构建的数学对象。
    空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常著名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。
    任何特定环境下的方法很大程度上由相关的教育系统所设定的目标所决定。教授数学的方法包括: 经典教育 -中世纪的经典教育大纲中的数学教育通常基于欧几里得原本,它被作为演绎推理的范式来教授。 死记硬背 - 通过重复和记忆来教授数学结果,定义和概念。通常用于乘法表。 习题 - 通过完成大量同类的练习来传授数学技巧,例如加带分数或者解二次方程。例如,古氏积木(Cuisenaire rods)来教授分数。 问题求解- 通过给学生无标准答案,不同寻常的,和有时候无解的问题来培养数学的智力,创造力和启发式思考。问题的范围可以从词问题到像国际数学奥林匹克竞赛这样的国际数学竞赛问题。 新数学 - 一种专注于集合论这样的抽象概念而不是实际应用的教授数学的方法。 历史方法 - 教授在一个历史,社会和文化背景下数学的发展过程。比纯粹抽象的方式提供了更多的人文乐趣。 这些方法不是所有的,而且任何数学教育系统很可能包含很多不同的方法。
    网店第1年
    35097984
  • 正式主义定义用其符号和操作规则来确定数学。 Haskell Curry将数学简单地定义为“正式系统的科学”。[33]正式系统是一组符号,或令牌,还有一些规则告诉令牌如何组合成公式。在正式系统中,公理一词具有特殊意义,与“不言而喻的真理”的普通含义不同。在正式系统中,公理是包含在给定的正式系统中的令牌的组合,而不需要使用系统的规则导出。
    为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托尔(1845—1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献。 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论、测度论、拓扑学及数理科学中必不可少的工具。20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”。
    许多科学的基本观念,往往需要数学观念来表示.所以数学家有饭吃了,但不能得诺贝尔奖,是自然的.数学中没有诺贝尔奖,这也许是件好事.诺贝尔奖太引人注目,会使数学家无法专注于自己的研究.——陈省身 现代高能物理到了量子物理以后,有很多根本无法做实验,在家用纸笔来算,这跟数学家想样的差不了多远,所以说数学在物理上有着不可思议的力量.——丘成桐 看书和写作业要注意顺序.我们要养成良好的学习方法,尽量回家后先复习一下当天学习的知识,特别是所记的笔记要重点关照,然后再写作业,这样效果更佳.
    反映科学技术的进步 最近十年来,科学技术迅猛发展,计算机,计算器,全球互联网逐步普及,学校数学承担着不断增加的责任。计算机的应用已经超越于解决问题的范围,他能给予人们研究科学的洞察力,由此导致对数学教育更高的要求。计算机在当今世界的作用完全可以与物理在二十世纪前半叶的作用相比美。通过计算机的模拟,能揭示未知的数学现象。它给数学如此大的推动,有如望远镜对于天文学,显微镜对于生物学一样。另一方面,计算机的巧妙应用,使得研究人员的学识和智慧得以充分发挥,人们能够相信,无论什么时候,数学教育都应该使用计算器和计算机。 日本数学教育协会主席藤田宏教授认为,数学史上有三大高峰:1.公元前三世纪诞生的欧氏几何学;2. 17-18世纪微积分的发现和发展;3.现代公理化数学的起源。当代数学的统一的进步,包括计算机科学的进步,可以称为数学史上的第四个高峰。数学和科学技术的这些发展,应该反映在数学教育中。 发展学生的数学能力 发展学生的科学素质,培养学生的数学能力,是数学教育的重要目标之一。推理能力 数学教育图书 数学教育图书 是重要的数学能力,它与探索能力,实践能力相辅相成。这些能力要同时培养。巴西的努纳斯教授认为,在小学里,儿童能够通过利用数学工具,在问题解决的活动中进行学习,并建立起符合他们年龄特征的推理系统;相反,如果儿童学习有关数学工具,但不把它结合到推理活动中,那么,他们解决问题的思维就将受到束缚。 ICME 9的小学数学教学组着重研究了如下专题:(1)理解和检查儿童的数学思维;(2)努力发展儿童的数学能力;(3)对教师在理解、评价和发展儿童数学能力方面给予支持。
    网店第1年
    35097984
  • 中国数学史 数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合.
    杨-米尔斯(Yang-Mills)存在性和质量缺口 量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
    哥德巴赫猜想 在1742年6月7日给欧拉的信中,哥德巴赫提出了以下猜想:a) 任一不小于6之偶数,都可以表示成两个奇质数之和;b) 任一不小于9之奇数,都可以表示成三个奇质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。现在通常把这两个命题统称为哥德巴赫猜想。把命题"任何一个大偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作“a+b”,哥氏猜想就是要证明“1+1”成立。1966年陈景润证明了“1+2”的成立,即“任何一个大偶数都可表示成一个素数与另一个素因子不超过2个的数之和”。
    任何特定环境下的方法很大程度上由相关的教育系统所设定的目标所决定。教授数学的方法包括: 经典教育 -中世纪的经典教育大纲中的数学教育通常基于欧几里得原本,它被作为演绎推理的范式来教授。 死记硬背 - 通过重复和记忆来教授数学结果,定义和概念。通常用于乘法表。 习题 - 通过完成大量同类的练习来传授数学技巧,例如加带分数或者解二次方程。例如,古氏积木(Cuisenaire rods)来教授分数。 问题求解- 通过给学生无标准答案,不同寻常的,和有时候无解的问题来培养数学的智力,创造力和启发式思考。问题的范围可以从词问题到像国际数学奥林匹克竞赛这样的国际数学竞赛问题。 新数学 - 一种专注于集合论这样的抽象概念而不是实际应用的教授数学的方法。 历史方法 - 教授在一个历史,社会和文化背景下数学的发展过程。比纯粹抽象的方式提供了更多的人文乐趣。 这些方法不是所有的,而且任何数学教育系统很可能包含很多不同的方法。
    网店第1年
    35097984
  • 我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前,数学是用文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于人们而言更便于操作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。
    万物皆数。——毕达哥拉斯 几何无王者之道。——欧几里德 数学是上帝用来书写宇宙的文字。——伽利略 我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题.我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。——笛卡儿(Rene Descartes 1596—1650) 数学家们都试图在这一天发现素数序列的一些秩序,我们有理由相信这是一个谜,人类的心灵永远无法渗入。——欧拉 数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来,但证明却隐藏的极深。数学是科学之王。——高斯 这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。——拉普拉斯(Pierre Simon Laplace 1749—1827) 如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。——柯西(Augustin Louis Cauchy 1789—1857) 数学的本质在于它的自由。——康托尔(Georg Ferdinand Ludwig Philipp Cantor 1845—1918) 音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。——克莱因(Christian Felix Klein 1849—1925)
    杨-米尔斯(Yang-Mills)存在性和质量缺口 量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
    各校建系初期,实施的数学教育差别很大,后来教育部才对必修课作了原则规定。主要授课教师多半是归国留学生,所用教材,除少数自编者外,多数是外文本或其中译本。从课程设置看,高等院校的数学教育水平不低,但各校的教学质量差异不小。数学系学生,每校每年级一般都只有少数几个人。 1931年清华大学开始培养数学研究生,后继者有浙江大学、中央大学、北京大学以及抗日战争期间由北京大学、清华大学、南开大学组成的(昆明)西南联合大学,数学的研究工作也比较集中在这几所学校。其中清华大学、浙江大学、武汉大学等还出版了刊物,登载数学论文。 除了在国内培养数学人才外,还通过一些渠道派遣留学生,例如利用中美庚款、中英庚款和中法庚款公开考试派送的留学生中,都有数学名额。30年代还曾邀请少数外国数学家如 W.F.奥斯古德、N.维纳、J.(-S.)阿达马等来华讲学。 从辛亥革命到中华人民共和国成立,是中国现代数学教育的奠基时期,不少老一辈数学家如姜立夫、熊庆来、陈建功等克服重重困难,艰苦创业,培养了一批数学人才;数量虽然不多,但对于使现代数学在中国土壤上生根,作出了宝贵贡献。
    网店第1年
    35097984
  • 许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。
    一.古埃及数学 埃及是世界上文化发达最早的几个地区之一,位于尼罗河两岸,公元前3200年左右,形成一个统一的国家。尼罗河定期泛滥,淹没全部谷地,水退后,要重新丈量居民的耕地面积。由于这种需要,多年积累起来的测地知识便逐渐发展成为几何学。 公元前2900年以后,埃及人建造了许多金字塔,作为法老的坟墓。从金字塔的结构,可知当时埃及人已懂得不少天文和几何的知识。例如基底直角的误差与底面正方形两边同正北的偏差都非常小。 现今对古埃及数学的认识,主要根据两卷用僧侣文写成的纸草书;一卷藏在伦敦,叫做莱因德纸草书,一卷藏在莫斯科。埃及最古老的文字是象形文字,后来演变成一种较简单的书写体,通常叫僧侣文。除了这两卷纸草书外,还有一些写在羊皮上或用象形文字刻在石碑上和木头上的史料,藏于世界各地。两卷纸草书的年代在公元前1850~前1650年之间,相当于中国的夏代。 埃及很早就用十进记数法,但却不知道位值制,每一个较高的单位是用特殊的符号来表示的。埃及算术主要是加法,而乘法是加法的重复。他们能解决一些一元一次方程的问题,并有等差、等比数列的初步知识。占特别重要地位的是分数算法,即把所有分数都化成单位分数(即分子是 1的分数)的和。莱因德纸草书用很大的篇幅来记载2/n(n从5到101)型的分数分解成单位分数的结果。为什么要这样分解以及用什么方法去分解,到现在还是一个谜。这种繁杂的分数算法实际上阻碍了算术的进一步发展。 纸草书还给出圆面积的计算方法:将直径减去它的1/9之后再平方。计算的结果相当于用 3.1605作为圆周率,不过他们并没有圆周率这个概念。根据莫斯科纸草书,推测他们也许知道正四棱台体积的计算方法。 总之,古代埃及人积累了一定的实践经验,但还没有上升为系统的理论。 二.美索不达米亚数学 西亚美索不达米亚地区(即底格里斯河与幼发拉底河流域)是人类早期文明发祥地之一。一般称公元前19世纪至公元前6世纪间该地区的文化为巴比伦文化,相应的数学属巴比伦数学。这一地区的数学传统上溯至约公元前二千年的苏美尔文化,后续至公元1世纪基督教创始时期。对巴比伦数学的了解,依据于19世纪初考古发掘出的楔形文字泥板,有约300块是纯数学内容的,其中约200块是各种数表,包括乘法表、倒数表、平方和立方表等。大约在公元前1800~前1600年间,巴比伦人已使用较系统的以60为基数的数系(包括60进制小数)。由于没有表示零的记号,这种记数法是不完善的。 巴比伦人的代数知识相当丰富,主要用文字表达,偶尔使用记号表示未知量。 在公元前1600年前的一块泥板上,记录了许多组毕达哥拉斯三元数组(即勾股数组)。据考证,其求法与希腊人丢番图的方法相同。巴比伦人还讨论了某些三次方程和可化为二次方程的四次方程。 巴比伦的几何属于实用性质的几何,多采用代数方法求解。他们有三角形相似及对应边成比例的知识。用公式 (с为圆的周长)求圆面积,相当于取π=3。 巴比伦人在公元前 3世纪已较频繁地用数学方法记载和研究天文现象,如记录和推算月球与行星的运动,他们将圆周分为360度的做法一直沿用至今。 三.玛雅数学 对于玛雅数学的了解,主要来自一些残剩的玛雅时代石刻。对这些石刻上象形文字的释读表明:玛雅人很早就创造了位值制的记数系统,具体记数方式又分两种:第一种叫横点记数法;第二种叫头形记数法。横点记数法以一点表示1,以一横表示5,以一介壳状 表示0,但不是0符号。 迄今所知道的玛雅数学知识就是如此,其中只显示加法和进位两种。关于形的认识,只能从玛雅古建筑中体会到一些。这些古建筑从外形看都很整齐划一,可以判断当时玛雅人对几何图形已有一定的知识。 四.印度数学 印度数学的数学发展可以划分为三个重要时期,首先是雅利安人入侵以前的达罗毗荼人时期,史称河谷文化;随后是吠陀时期;其次是悉檀多时期。由于河谷文化的象形文字至今不能解读,所以对这一时期印度数学的实际情况了解得很少。 印度数学最早有文字记录的是吠陀时代,其数学材料混杂在婆罗门教和印度教的经典《吠陀》当中,年代很不确定,今人所考定的年代出入很大,其年代最早可上溯到公元前10世纪,最晚至公元前3世纪。 由几何计算导致了一些求解一、二次代数方程问题,印度用算术方法给出求解公式。 耆那教的经典由宗教原理、数学原理、算术和天文等几部分构成,流传下来的原始经典较少,不过流传一些公元前5世纪至公元后2世纪的注释。 公元773年,印度数码传入阿拉伯国家,后来欧洲人通过阿拉伯人接受了,成为今天国际通用的所谓阿拉伯数码。这种印度数码与记数法成为近世欧洲科学赖以进步的基础。中国唐朝印度裔天文历学家瞿昙悉达于718年翻译的印度历法《九执历》当中也有这些数码,可是未被中国人所接受。 由于印度屡被其他民族征服,使印度古代天文数学受外来文化影响较深,除希腊天文数学外,也不排除中国文化的影响,然而印度数学始终保持东方数学以计算为中心的实用化特色。与其算术和代数相比,印度人在几何方面的工作显得十分薄弱,最具特色与影响的成就是其不定分析和对希腊三角术的推进。
    反映科学技术的进步 最近十年来,科学技术迅猛发展,计算机,计算器,全球互联网逐步普及,学校数学承担着不断增加的责任。计算机的应用已经超越于解决问题的范围,他能给予人们研究科学的洞察力,由此导致对数学教育更高的要求。计算机在当今世界的作用完全可以与物理在二十世纪前半叶的作用相比美。通过计算机的模拟,能揭示未知的数学现象。它给数学如此大的推动,有如望远镜对于天文学,显微镜对于生物学一样。另一方面,计算机的巧妙应用,使得研究人员的学识和智慧得以充分发挥,人们能够相信,无论什么时候,数学教育都应该使用计算器和计算机。 日本数学教育协会主席藤田宏教授认为,数学史上有三大高峰:1.公元前三世纪诞生的欧氏几何学;2. 17-18世纪微积分的发现和发展;3.现代公理化数学的起源。当代数学的统一的进步,包括计算机科学的进步,可以称为数学史上的第四个高峰。数学和科学技术的这些发展,应该反映在数学教育中。 发展学生的数学能力 发展学生的科学素质,培养学生的数学能力,是数学教育的重要目标之一。推理能力 数学教育图书 数学教育图书 是重要的数学能力,它与探索能力,实践能力相辅相成。这些能力要同时培养。巴西的努纳斯教授认为,在小学里,儿童能够通过利用数学工具,在问题解决的活动中进行学习,并建立起符合他们年龄特征的推理系统;相反,如果儿童学习有关数学工具,但不把它结合到推理活动中,那么,他们解决问题的思维就将受到束缚。 ICME 9的小学数学教学组着重研究了如下专题:(1)理解和检查儿童的数学思维;(2)努力发展儿童的数学能力;(3)对教师在理解、评价和发展儿童数学能力方面给予支持。
    由于各国的情况存在诸多差异,在高中数学课程的具体安排上,各国有不同的着重点。例如,英国的高级水平(A-level)数学,主要面向对数学要求较高的理工大学考生,此种数学班的学生需要学习纯数学,统计学,理论力学等内容。韩国开办面向天才生的理科高中,密码学和高等字符串的理论理科高中的学习内容。印度有良好的计算技能传统,甚至文盲的蔬菜小贩也有出色的算术运算技能。为了保持这一善于计算的传统,他们在当今数学教学中仍然不允许使用计算器。
    网店第1年
    35097984
  • 数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),其英语源自于古希腊语的μθημα(máthēma),有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦被用来指数学。 其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká). 在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”). 数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献. 基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态. 代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.
    中国数学史 数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合.
    数学教育是一种社会文化现象,其社会性决定了数学教育要与时俱进,不断创新.数学教育中的教育目标、教育内容、教育技术等一系列问题都会随着社会的进步而不断变革与发展.数学教育改革的背景,至少有来自于九个方面的考虑:知识经济、社会关系、家庭压力、国际潮流、考试改革、科教兴国、深化素质教育、普及义务教育、科技进步。
    反映科学技术的进步 最近十年来,科学技术迅猛发展,计算机,计算器,全球互联网逐步普及,学校数学承担着不断增加的责任。计算机的应用已经超越于解决问题的范围,他能给予人们研究科学的洞察力,由此导致对数学教育更高的要求。计算机在当今世界的作用完全可以与物理在二十世纪前半叶的作用相比美。通过计算机的模拟,能揭示未知的数学现象。它给数学如此大的推动,有如望远镜对于天文学,显微镜对于生物学一样。另一方面,计算机的巧妙应用,使得研究人员的学识和智慧得以充分发挥,人们能够相信,无论什么时候,数学教育都应该使用计算器和计算机。 日本数学教育协会主席藤田宏教授认为,数学史上有三大高峰:1.公元前三世纪诞生的欧氏几何学;2. 17-18世纪微积分的发现和发展;3.现代公理化数学的起源。当代数学的统一的进步,包括计算机科学的进步,可以称为数学史上的第四个高峰。数学和科学技术的这些发展,应该反映在数学教育中。 发展学生的数学能力 发展学生的科学素质,培养学生的数学能力,是数学教育的重要目标之一。推理能力 数学教育图书 数学教育图书 是重要的数学能力,它与探索能力,实践能力相辅相成。这些能力要同时培养。巴西的努纳斯教授认为,在小学里,儿童能够通过利用数学工具,在问题解决的活动中进行学习,并建立起符合他们年龄特征的推理系统;相反,如果儿童学习有关数学工具,但不把它结合到推理活动中,那么,他们解决问题的思维就将受到束缚。 ICME 9的小学数学教学组着重研究了如下专题:(1)理解和检查儿童的数学思维;(2)努力发展儿童的数学能力;(3)对教师在理解、评价和发展儿童数学能力方面给予支持。
    网店第1年
    35097984
  • 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术.第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破.除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了. 更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普.历史上曾有过许多各异的记数系统. 古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算.数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究. 西欧从古希腊到16世纪经过文艺复兴时代,初等代数、以及三角学等初等数学已大体完备.但尚未出现极限的概念. 17世纪在欧洲变量概念的产生,使人们开始研究变化中的量与量的互相关系和图形间的互相变换.在经典力学的建立过程中,结合了几何精密思想的微积分的方法被发明.随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等领域也开始慢慢发展
    万物皆数。——毕达哥拉斯 几何无王者之道。——欧几里德 数学是上帝用来书写宇宙的文字。——伽利略 我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题.我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。——笛卡儿(Rene Descartes 1596—1650) 数学家们都试图在这一天发现素数序列的一些秩序,我们有理由相信这是一个谜,人类的心灵永远无法渗入。——欧拉 数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来,但证明却隐藏的极深。数学是科学之王。——高斯 这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。——拉普拉斯(Pierre Simon Laplace 1749—1827) 如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。——柯西(Augustin Louis Cauchy 1789—1857) 数学的本质在于它的自由。——康托尔(Georg Ferdinand Ludwig Philipp Cantor 1845—1918) 音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。——克莱因(Christian Felix Klein 1849—1925)
    空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常著名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。
    绝大部分的历史时期,数学教育的标准是地域性的,由不同的学校或教师根据学 《从数学教育到教育数学》 《从数学教育到教育数学》 生的水平和兴趣来设置。 在现代,有一种趋势是建立地区或国家标准,通常隶属于更广泛的学校教学大纲。例如在英国,数学教育的标准是英国国家教育大纲的一部分。在美国,美国数学教师国家委员会制定了一系列文档,最近的有学校数学的原则和标准,为学校数学的总体目标达成了一致。更具体的教学标准一般在州一级制定 - 譬如在加利福尼亚,加州教育理事会为数学教育制定了标准
    网店第1年
    35097984
  • 数学(mathematics或maths,其英文来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。 而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
    庞加莱(Poincare)猜想(已经被证明) 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
    任何特定环境下的方法很大程度上由相关的教育系统所设定的目标所决定。教授数学的方法包括: 经典教育 -中世纪的经典教育大纲中的数学教育通常基于欧几里得原本,它被作为演绎推理的范式来教授。 死记硬背 - 通过重复和记忆来教授数学结果,定义和概念。通常用于乘法表。 习题 - 通过完成大量同类的练习来传授数学技巧,例如加带分数或者解二次方程。例如,古氏积木(Cuisenaire rods)来教授分数。 问题求解- 通过给学生无标准答案,不同寻常的,和有时候无解的问题来培养数学的智力,创造力和启发式思考。问题的范围可以从词问题到像国际数学奥林匹克竞赛这样的国际数学竞赛问题。 新数学 - 一种专注于集合论这样的抽象概念而不是实际应用的教授数学的方法。 历史方法 - 教授在一个历史,社会和文化背景下数学的发展过程。比纯粹抽象的方式提供了更多的人文乐趣。 这些方法不是所有的,而且任何数学教育系统很可能包含很多不同的方法。
    反映科学技术的进步 最近十年来,科学技术迅猛发展,计算机,计算器,全球互联网逐步普及,学校数学承担着不断增加的责任。计算机的应用已经超越于解决问题的范围,他能给予人们研究科学的洞察力,由此导致对数学教育更高的要求。计算机在当今世界的作用完全可以与物理在二十世纪前半叶的作用相比美。通过计算机的模拟,能揭示未知的数学现象。它给数学如此大的推动,有如望远镜对于天文学,显微镜对于生物学一样。另一方面,计算机的巧妙应用,使得研究人员的学识和智慧得以充分发挥,人们能够相信,无论什么时候,数学教育都应该使用计算器和计算机。 日本数学教育协会主席藤田宏教授认为,数学史上有三大高峰:1.公元前三世纪诞生的欧氏几何学;2. 17-18世纪微积分的发现和发展;3.现代公理化数学的起源。当代数学的统一的进步,包括计算机科学的进步,可以称为数学史上的第四个高峰。数学和科学技术的这些发展,应该反映在数学教育中。 发展学生的数学能力 发展学生的科学素质,培养学生的数学能力,是数学教育的重要目标之一。推理能力 数学教育图书 数学教育图书 是重要的数学能力,它与探索能力,实践能力相辅相成。这些能力要同时培养。巴西的努纳斯教授认为,在小学里,儿童能够通过利用数学工具,在问题解决的活动中进行学习,并建立起符合他们年龄特征的推理系统;相反,如果儿童学习有关数学工具,但不把它结合到推理活动中,那么,他们解决问题的思维就将受到束缚。 ICME 9的小学数学教学组着重研究了如下专题:(1)理解和检查儿童的数学思维;(2)努力发展儿童的数学能力;(3)对教师在理解、评价和发展儿童数学能力方面给予支持。
    网店第1年
    35097984
  • 正式主义定义用其符号和操作规则来确定数学。 Haskell Curry将数学简单地定义为“正式系统的科学”。[33]正式系统是一组符号,或令牌,还有一些规则告诉令牌如何组合成公式。在正式系统中,公理一词具有特殊意义,与“不言而喻的真理”的普通含义不同。在正式系统中,公理是包含在给定的正式系统中的令牌的组合,而不需要使用系统的规则导出。
    万物皆数。——毕达哥拉斯 几何无王者之道。——欧几里德 数学是上帝用来书写宇宙的文字。——伽利略 我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题.我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。——笛卡儿(Rene Descartes 1596—1650) 数学家们都试图在这一天发现素数序列的一些秩序,我们有理由相信这是一个谜,人类的心灵永远无法渗入。——欧拉 数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来,但证明却隐藏的极深。数学是科学之王。——高斯 这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。——拉普拉斯(Pierre Simon Laplace 1749—1827) 如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。——柯西(Augustin Louis Cauchy 1789—1857) 数学的本质在于它的自由。——康托尔(Georg Ferdinand Ludwig Philipp Cantor 1845—1918) 音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。——克莱因(Christian Felix Klein 1849—1925)
    许多科学的基本观念,往往需要数学观念来表示.所以数学家有饭吃了,但不能得诺贝尔奖,是自然的.数学中没有诺贝尔奖,这也许是件好事.诺贝尔奖太引人注目,会使数学家无法专注于自己的研究.——陈省身 现代高能物理到了量子物理以后,有很多根本无法做实验,在家用纸笔来算,这跟数学家想样的差不了多远,所以说数学在物理上有着不可思议的力量.——丘成桐 看书和写作业要注意顺序.我们要养成良好的学习方法,尽量回家后先复习一下当天学习的知识,特别是所记的笔记要重点关照,然后再写作业,这样效果更佳.
    基础数学是多数古文明的教育系统的一部分,包括古希腊,罗马帝国,吠陀社会和古埃及。在多数情况下,只有足够高地位,财富或等级的男性孩童才能接受正规教育。 数学教育图书 数学教育图书 在柏拉图把文科分成三学科和四学科的划分中,四学科包括数学的算术和几何领域。这个结构在中世纪欧洲所发展的经典教育的体系得到了延续。几何的教育基于欧几里得的原本。商业的学徒,如石匠,商人和借贷者需要学习和他们的行业相关的这种实用数学。 第一本英语的数学教科书由Robert Recorde出版,从1540年的艺术的基础(The Grounde of Artes)开始。 在文艺复兴时期,数学的学术地位下降了,因为它和手工业和贸易紧密相关。虽然在欧洲的大学里继续教授数学,它被视为自然哲学,形而上学和道德哲学的辅助。 这个趋势在十七世纪得到某种逆转,阿伯丁大学在1613年建立数学主席职位,随后有牛津大学在1619年建立几何主席职位和剑桥大学在1662年设立的卢卡逊教授。但是,数学一般不在大学之外教授。例如牛顿在他在1661年进入剑桥三一学院之前没有受过正规数学教育。 在十八世纪和十九世纪,工业革命导致城市人口大量增加。基本的数字技能,如描述时间,数钱和简单算术,称为新的城市生活的基本能力。在新的公共教育系统中,数学成了从幼年开始的课程的中心部分。 到二十世纪,数学成了所有发达国家的核心课程的一部分。但是,多样和变化着的关于数学教育的目的的思想导致所采用的内容和方法几乎没有任何整体上的一致性。
    网店第1年
    35097984
  • P(多项式算法)问题对 NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。 与此类似的是,如果某人告诉你,数字13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。
    霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
    绝大部分的历史时期,数学教育的标准是地域性的,由不同的学校或教师根据学 《从数学教育到教育数学》 《从数学教育到教育数学》 生的水平和兴趣来设置。 在现代,有一种趋势是建立地区或国家标准,通常隶属于更广泛的学校教学大纲。例如在英国,数学教育的标准是英国国家教育大纲的一部分。在美国,美国数学教师国家委员会制定了一系列文档,最近的有学校数学的原则和标准,为学校数学的总体目标达成了一致。更具体的教学标准一般在州一级制定 - 譬如在加利福尼亚,加州教育理事会为数学教育制定了标准
    培养学生的学科意识 ICME 9的初中数学教学组认为,对于11-16岁的少年儿童,数学课程,相关的教材和教学活动,应该巧妙地帮助学生完成从儿童到成人行为的转变。初中数学课程既要考虑与小学课程的衔接,又要考虑与高中课程的衔接。 在数学中,符号是必不可少的语言。它是人类思维与交流的工具,它能够清晰而简明地表达数学思想和规律。数学符号涉及多个数学分支,在科学技术中,利用数学符号,能有效地寻求模式,进行概括。借助于数学符号,能把有关问题规范化。因此,数学课程要帮助学生树立正确的学科观念,建立正确的符号意识。初中生在数学学习中,要接触大量数学符号,因此,在概念的教学中,要注意符号的自然引入。在代数中要讲请算理与算法,在几何中要弄清图形的特征性质,正确揭示符号所反映的的关系与规律。 帮助学生掌握数学思想方法 高中数学课程面临重大改革,美国数学教师协会(NCTM)於2000年制订发表的"学校数学课程的原则与标准"受到举世关注。高中生应该学习范围宽广的函数知识,包括三角函数,指数函数,等等。在几何,度量,数据分析,概率等方面,学生应该巩固和扩展他们在低年级所学的知识。不断发展他们在数学方面,特别是在问题解决,数学表述,推理论证等方面的熟练程度。ICME 9的高中数学教学组一致认为,数学思想方法的教学应该成为高中数学课程的重要部分。数学建模思想受到与会专家的普遍重视。
    网店第1年
    35097984
  • 数学(mathematics或maths,其英文来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。 而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
    数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术.第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破.除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了. 更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普.历史上曾有过许多各异的记数系统. 古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算.数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究. 西欧从古希腊到16世纪经过文艺复兴时代,初等代数、以及三角学等初等数学已大体完备.但尚未出现极限的概念. 17世纪在欧洲变量概念的产生,使人们开始研究变化中的量与量的互相关系和图形间的互相变换.在经典力学的建立过程中,结合了几何精密思想的微积分的方法被发明.随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等领域也开始慢慢发展
    贝赫(Birch)和斯维讷通—戴尔(Swinnerton-Dyer)猜想 数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。
    各校建系初期,实施的数学教育差别很大,后来教育部才对必修课作了原则规定。主要授课教师多半是归国留学生,所用教材,除少数自编者外,多数是外文本或其中译本。从课程设置看,高等院校的数学教育水平不低,但各校的教学质量差异不小。数学系学生,每校每年级一般都只有少数几个人。 1931年清华大学开始培养数学研究生,后继者有浙江大学、中央大学、北京大学以及抗日战争期间由北京大学、清华大学、南开大学组成的(昆明)西南联合大学,数学的研究工作也比较集中在这几所学校。其中清华大学、浙江大学、武汉大学等还出版了刊物,登载数学论文。 除了在国内培养数学人才外,还通过一些渠道派遣留学生,例如利用中美庚款、中英庚款和中法庚款公开考试派送的留学生中,都有数学名额。30年代还曾邀请少数外国数学家如 W.F.奥斯古德、N.维纳、J.(-S.)阿达马等来华讲学。 从辛亥革命到中华人民共和国成立,是中国现代数学教育的奠基时期,不少老一辈数学家如姜立夫、熊庆来、陈建功等克服重重困难,艰苦创业,培养了一批数学人才;数量虽然不多,但对于使现代数学在中国土壤上生根,作出了宝贵贡献。
    网店第1年
    35097984
  • 中国数学史 数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合.
    万物皆数。——毕达哥拉斯 几何无王者之道。——欧几里德 数学是上帝用来书写宇宙的文字。——伽利略 我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题.我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。——笛卡儿(Rene Descartes 1596—1650) 数学家们都试图在这一天发现素数序列的一些秩序,我们有理由相信这是一个谜,人类的心灵永远无法渗入。——欧拉 数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来,但证明却隐藏的极深。数学是科学之王。——高斯 这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。——拉普拉斯(Pierre Simon Laplace 1749—1827) 如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。——柯西(Augustin Louis Cauchy 1789—1857) 数学的本质在于它的自由。——康托尔(Georg Ferdinand Ludwig Philipp Cantor 1845—1918) 音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。——克莱因(Christian Felix Klein 1849—1925)
    纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶—斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。
    贝赫(Birch)和斯维讷通—戴尔(Swinnerton-Dyer)猜想 数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。
    网店第1年
    35097984
  • 亚里士多德把数学定义为“数量数学",这个定义直到18世纪。从19世纪开始,数学研究越来越严格,开始涉及与数量和量度无明确关系的群论和投影几何等抽象主题,数学家和哲学家开始提出各种新的定义。这些定义中的一些强调了大量数学的演绎性质,一些强调了它的抽象性,一些强调数学中的某些话题。即使在专业人士中,对数学的定义也没有达成共识。数学是否是艺术或科学,甚至没有一致意见。[8]许多专业数学家对数学的定义不感兴趣,或者认为它是不可定义的。有些只是说,“数学是数学家做的。” 数学定义的三个主要类型被称为逻辑学家,直觉主义者和形式主义者,每个都反映了不同的哲学思想学派。都有严重的问题,没有人普遍接受,没有和解似乎是可行的。 数学逻辑的早期定义是本杰明·皮尔士(Benjamin Peirce)的“得出必要结论的科学”(1870)。在Principia Mathematica,Bertrand Russell和Alfred North Whitehead提出了被称为逻辑主义的哲学程序,并试图证明所有的数学概念,陈述和原则都可以用符号逻辑来定义和证明。数学的逻辑学定义是罗素的“所有数学是符号逻辑”(1903)。 直觉主义定义,从数学家L.E.J. Brouwer,识别具有某些精神现象的数学。直觉主义定义的一个例子是“数学是一个接着一个进行构造的心理活动”。直观主义的特点是它拒绝根据其他定义认为有效的一些数学思想。特别是,虽然其他数学哲学允许可以被证明存在的对象,即使它们不能被构造,但直觉主义只允许可以实际构建的数学对象。
    数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的有理和无理数. 另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较.
    许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。
    由于各国的情况存在诸多差异,在高中数学课程的具体安排上,各国有不同的着重点。例如,英国的高级水平(A-level)数学,主要面向对数学要求较高的理工大学考生,此种数学班的学生需要学习纯数学,统计学,理论力学等内容。韩国开办面向天才生的理科高中,密码学和高等字符串的理论理科高中的学习内容。印度有良好的计算技能传统,甚至文盲的蔬菜小贩也有出色的算术运算技能。为了保持这一善于计算的传统,他们在当今数学教学中仍然不允许使用计算器。
    网店第1年
    35097984
  • 亚里士多德把数学定义为“数量数学",这个定义直到18世纪。从19世纪开始,数学研究越来越严格,开始涉及与数量和量度无明确关系的群论和投影几何等抽象主题,数学家和哲学家开始提出各种新的定义。这些定义中的一些强调了大量数学的演绎性质,一些强调了它的抽象性,一些强调数学中的某些话题。即使在专业人士中,对数学的定义也没有达成共识。数学是否是艺术或科学,甚至没有一致意见。[8]许多专业数学家对数学的定义不感兴趣,或者认为它是不可定义的。有些只是说,“数学是数学家做的。” 数学定义的三个主要类型被称为逻辑学家,直觉主义者和形式主义者,每个都反映了不同的哲学思想学派。都有严重的问题,没有人普遍接受,没有和解似乎是可行的。 数学逻辑的早期定义是本杰明·皮尔士(Benjamin Peirce)的“得出必要结论的科学”(1870)。在Principia Mathematica,Bertrand Russell和Alfred North Whitehead提出了被称为逻辑主义的哲学程序,并试图证明所有的数学概念,陈述和原则都可以用符号逻辑来定义和证明。数学的逻辑学定义是罗素的“所有数学是符号逻辑”(1903)。 直觉主义定义,从数学家L.E.J. Brouwer,识别具有某些精神现象的数学。直觉主义定义的一个例子是“数学是一个接着一个进行构造的心理活动”。直观主义的特点是它拒绝根据其他定义认为有效的一些数学思想。特别是,虽然其他数学哲学允许可以被证明存在的对象,即使它们不能被构造,但直觉主义只允许可以实际构建的数学对象。
    数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的有理和无理数. 另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较.
    万物皆数。——毕达哥拉斯 几何无王者之道。——欧几里德 数学是上帝用来书写宇宙的文字。——伽利略 我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题.我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。——笛卡儿(Rene Descartes 1596—1650) 数学家们都试图在这一天发现素数序列的一些秩序,我们有理由相信这是一个谜,人类的心灵永远无法渗入。——欧拉 数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来,但证明却隐藏的极深。数学是科学之王。——高斯 这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。——拉普拉斯(Pierre Simon Laplace 1749—1827) 如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。——柯西(Augustin Louis Cauchy 1789—1857) 数学的本质在于它的自由。——康托尔(Georg Ferdinand Ludwig Philipp Cantor 1845—1918) 音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。——克莱因(Christian Felix Klein 1849—1925)
    中国高等学校是全国科学研究的一个重要的方面军,数学研究也是这样,特别是近十年来有了较全面的发展与提高,一些大学还设立了数学研究所。高级数学人才的培养也随之逐渐能立足于国内,正式建立了学位制。数学方面已在基础数学、计算数学、应用数学、概率论与数理统计、运筹学与控制论、数学教育与数学史等方面培养博士研究生。1983年在中国第一批18位接受本国博士学位的研究生中,获得数学博士学位的就有12人。必须指出,中国科学院数学各方面研究所,在培育人才,包括培养研究生方面,也起了重要作用。1966年以前曾向少数国家派遣了数学方面的留学生和进修教师,1978年起派出人员大量增加。还邀请了许多国外数学家前来讲学,中国数学家出国讲学和参加国际数学学术会议的就更多了。中外学术交流对中国数学事业的繁荣起着很好的作用。
    网店第1年
    35097984
  • 新疆乌鲁木齐机器人教育培训班 
    少儿机器人课程是提升孩子各项综合能力的有效途径之一,孩子在搭建机器人的过程中能学到物理化,编程方面的知识,少儿机器人机器人课程在国内推出后,受到了很多小朋友的欢迎,以前只能在电视中看见的机器人已经走到了日常的生活中,那么孩子从小学习机器人课程有哪些好处呢? 
    少儿机器人培训好处在于可以培养孩子动手能力,语言表达能力,团队合作能力等一系列品质,从而间接性提高孩子的学习成绩。孩子在动手搭建的机器人过程中,必须要运用机器人编程,并且在多次试验之后才能完成一辆合格的机器人。在这一过程中,潜在的培养了孩子的耐心,有利于意志力的培养,同时也开发了孩子的右脑,放飞了孩子的想象力,激发了孩子对新鲜事物的求知欲,撇杨孩子全面思考的能力。 
    乌鲁木齐机器人培训班乌鲁木齐机器人兴趣班 少儿编程培训机器人的发明、研究及应用实践是以科学研究和社会生产为需求的,进入到教育是其领域的扩大与发展。但是,由于它所涉及知识的广泛性和涉及技术的综合性,这都使的机器人对教育而言具有更多的价值。根据有关机器人教育专家的研究与实践,机器人教育的应用可以分为五种类型。随着”互联网+“的发展,现在机器人培训已经开始网络化,网上视频培训,论坛互动已经悄然进入机器人培训市场。机器人基地中的下载中心,正在为有机器人培训需求的人提供着更多便利。
    恭贺领先教育机器人成功进入乌鲁木齐14小学、乌鲁木齐第3小学、乌鲁木齐27小学、乌鲁木齐农大附小,乌鲁木齐88中学,乌鲁木齐第三中学等名校合作,共同推动机器人科技教育的普及。

    咨询电话:李老师


    网店第1年
    35062516
  • 直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分. 现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……). [1] 数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用. 具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学). 就纵度而言,在数学各自领域上的探索亦越发深入.
    只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡。——希尔伯特(David Hilbert 1862—1943) 问题是数学的心脏.——保罗·哈尔莫斯(Paul Halmos 1916—2006)   时间是个常数,但对勤奋者来说,是个“变数”。用“分”来计算时间的人比用“小时”来计算时间的人时间多59倍。——雷巴柯夫 中国人物 祖冲之 祖冲之(10张) 事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已.又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣.——刘徽 迟疾之率,非出神怪,有形可检,有数可推.——祖冲之(429—500) 新的数学方法和概念,常常比解决数学问题本身更重要.——华罗庚 数学表达上准确简洁、逻辑上抽象普适、形式上灵活多变,是宇宙交际的理想工具.——周海中 [4] 科学需要实验.但实验不能绝对精确.如有数学理论,则全靠推论,就完全正确了.这科学不能离开数学的原因.
    数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果.现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。
    杨-米尔斯(Yang-Mills)存在性和质量缺口 量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
    网店第1年
    35097984
  • 空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常著名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。
    数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果.现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。
    霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
    数学教育是研究数学教学的实践和方法的学科。而且,数学教育工作者也关注促进这种实践的工具及其研究的发展。数学教育是现代社会激烈争论的主题之一。这个术语有个歧义,它既指各地的教室里的实践,也指新生的一个学科,它有自己的期刊,会议,等等。这方面最重要的国际组织是数学教育国际委员会(the International Commission on Mathematical Instruction)。
    网店第1年
    35097984
  • 为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托尔(1845—1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献。 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论、测度论、拓扑学及数理科学中必不可少的工具。20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”。
    贝赫(Birch)和斯维讷通—戴尔(Swinnerton-Dyer)猜想 数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。
    基础数学是多数古文明的教育系统的一部分,包括古希腊,罗马帝国,吠陀社会和古埃及。在多数情况下,只有足够高地位,财富或等级的男性孩童才能接受正规教育。 数学教育图书 数学教育图书 在柏拉图把文科分成三学科和四学科的划分中,四学科包括数学的算术和几何领域。这个结构在中世纪欧洲所发展的经典教育的体系得到了延续。几何的教育基于欧几里得的原本。商业的学徒,如石匠,商人和借贷者需要学习和他们的行业相关的这种实用数学。 第一本英语的数学教科书由Robert Recorde出版,从1540年的艺术的基础(The Grounde of Artes)开始。 在文艺复兴时期,数学的学术地位下降了,因为它和手工业和贸易紧密相关。虽然在欧洲的大学里继续教授数学,它被视为自然哲学,形而上学和道德哲学的辅助。 这个趋势在十七世纪得到某种逆转,阿伯丁大学在1613年建立数学主席职位,随后有牛津大学在1619年建立几何主席职位和剑桥大学在1662年设立的卢卡逊教授。但是,数学一般不在大学之外教授。例如牛顿在他在1661年进入剑桥三一学院之前没有受过正规数学教育。 在十八世纪和十九世纪,工业革命导致城市人口大量增加。基本的数字技能,如描述时间,数钱和简单算术,称为新的城市生活的基本能力。在新的公共教育系统中,数学成了从幼年开始的课程的中心部分。 到二十世纪,数学成了所有发达国家的核心课程的一部分。但是,多样和变化着的关于数学教育的目的的思想导致所采用的内容和方法几乎没有任何整体上的一致性。
    各校建系初期,实施的数学教育差别很大,后来教育部才对必修课作了原则规定。主要授课教师多半是归国留学生,所用教材,除少数自编者外,多数是外文本或其中译本。从课程设置看,高等院校的数学教育水平不低,但各校的教学质量差异不小。数学系学生,每校每年级一般都只有少数几个人。 1931年清华大学开始培养数学研究生,后继者有浙江大学、中央大学、北京大学以及抗日战争期间由北京大学、清华大学、南开大学组成的(昆明)西南联合大学,数学的研究工作也比较集中在这几所学校。其中清华大学、浙江大学、武汉大学等还出版了刊物,登载数学论文。 除了在国内培养数学人才外,还通过一些渠道派遣留学生,例如利用中美庚款、中英庚款和中法庚款公开考试派送的留学生中,都有数学名额。30年代还曾邀请少数外国数学家如 W.F.奥斯古德、N.维纳、J.(-S.)阿达马等来华讲学。 从辛亥革命到中华人民共和国成立,是中国现代数学教育的奠基时期,不少老一辈数学家如姜立夫、熊庆来、陈建功等克服重重困难,艰苦创业,培养了一批数学人才;数量虽然不多,但对于使现代数学在中国土壤上生根,作出了宝贵贡献。
    网店第1年
    35097984
  • 许多科学的基本观念,往往需要数学观念来表示.所以数学家有饭吃了,但不能得诺贝尔奖,是自然的.数学中没有诺贝尔奖,这也许是件好事.诺贝尔奖太引人注目,会使数学家无法专注于自己的研究.——陈省身 现代高能物理到了量子物理以后,有很多根本无法做实验,在家用纸笔来算,这跟数学家想样的差不了多远,所以说数学在物理上有着不可思议的力量.——丘成桐 看书和写作业要注意顺序.我们要养成良好的学习方法,尽量回家后先复习一下当天学习的知识,特别是所记的笔记要重点关照,然后再写作业,这样效果更佳.
    霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
    贝赫(Birch)和斯维讷通—戴尔(Swinnerton-Dyer)猜想 数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。
    基础数学是多数古文明的教育系统的一部分,包括古希腊,罗马帝国,吠陀社会和古埃及。在多数情况下,只有足够高地位,财富或等级的男性孩童才能接受正规教育。 数学教育图书 数学教育图书 在柏拉图把文科分成三学科和四学科的划分中,四学科包括数学的算术和几何领域。这个结构在中世纪欧洲所发展的经典教育的体系得到了延续。几何的教育基于欧几里得的原本。商业的学徒,如石匠,商人和借贷者需要学习和他们的行业相关的这种实用数学。 第一本英语的数学教科书由Robert Recorde出版,从1540年的艺术的基础(The Grounde of Artes)开始。 在文艺复兴时期,数学的学术地位下降了,因为它和手工业和贸易紧密相关。虽然在欧洲的大学里继续教授数学,它被视为自然哲学,形而上学和道德哲学的辅助。 这个趋势在十七世纪得到某种逆转,阿伯丁大学在1613年建立数学主席职位,随后有牛津大学在1619年建立几何主席职位和剑桥大学在1662年设立的卢卡逊教授。但是,数学一般不在大学之外教授。例如牛顿在他在1661年进入剑桥三一学院之前没有受过正规数学教育。 在十八世纪和十九世纪,工业革命导致城市人口大量增加。基本的数字技能,如描述时间,数钱和简单算术,称为新的城市生活的基本能力。在新的公共教育系统中,数学成了从幼年开始的课程的中心部分。 到二十世纪,数学成了所有发达国家的核心课程的一部分。但是,多样和变化着的关于数学教育的目的的思想导致所采用的内容和方法几乎没有任何整体上的一致性。
    网店第1年
    35097984
  • 许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。
    许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。
    基础数学是多数古文明的教育系统的一部分,包括古希腊,罗马帝国,吠陀社会和古埃及。在多数情况下,只有足够高地位,财富或等级的男性孩童才能接受正规教育。 数学教育图书 数学教育图书 在柏拉图把文科分成三学科和四学科的划分中,四学科包括数学的算术和几何领域。这个结构在中世纪欧洲所发展的经典教育的体系得到了延续。几何的教育基于欧几里得的原本。商业的学徒,如石匠,商人和借贷者需要学习和他们的行业相关的这种实用数学。 第一本英语的数学教科书由Robert Recorde出版,从1540年的艺术的基础(The Grounde of Artes)开始。 在文艺复兴时期,数学的学术地位下降了,因为它和手工业和贸易紧密相关。虽然在欧洲的大学里继续教授数学,它被视为自然哲学,形而上学和道德哲学的辅助。 这个趋势在十七世纪得到某种逆转,阿伯丁大学在1613年建立数学主席职位,随后有牛津大学在1619年建立几何主席职位和剑桥大学在1662年设立的卢卡逊教授。但是,数学一般不在大学之外教授。例如牛顿在他在1661年进入剑桥三一学院之前没有受过正规数学教育。 在十八世纪和十九世纪,工业革命导致城市人口大量增加。基本的数字技能,如描述时间,数钱和简单算术,称为新的城市生活的基本能力。在新的公共教育系统中,数学成了从幼年开始的课程的中心部分。 到二十世纪,数学成了所有发达国家的核心课程的一部分。但是,多样和变化着的关于数学教育的目的的思想导致所采用的内容和方法几乎没有任何整体上的一致性。
    培养学生的学科意识 ICME 9的初中数学教学组认为,对于11-16岁的少年儿童,数学课程,相关的教材和教学活动,应该巧妙地帮助学生完成从儿童到成人行为的转变。初中数学课程既要考虑与小学课程的衔接,又要考虑与高中课程的衔接。 在数学中,符号是必不可少的语言。它是人类思维与交流的工具,它能够清晰而简明地表达数学思想和规律。数学符号涉及多个数学分支,在科学技术中,利用数学符号,能有效地寻求模式,进行概括。借助于数学符号,能把有关问题规范化。因此,数学课程要帮助学生树立正确的学科观念,建立正确的符号意识。初中生在数学学习中,要接触大量数学符号,因此,在概念的教学中,要注意符号的自然引入。在代数中要讲请算理与算法,在几何中要弄清图形的特征性质,正确揭示符号所反映的的关系与规律。 帮助学生掌握数学思想方法 高中数学课程面临重大改革,美国数学教师协会(NCTM)於2000年制订发表的"学校数学课程的原则与标准"受到举世关注。高中生应该学习范围宽广的函数知识,包括三角函数,指数函数,等等。在几何,度量,数据分析,概率等方面,学生应该巩固和扩展他们在低年级所学的知识。不断发展他们在数学方面,特别是在问题解决,数学表述,推理论证等方面的熟练程度。ICME 9的高中数学教学组一致认为,数学思想方法的教学应该成为高中数学课程的重要部分。数学建模思想受到与会专家的普遍重视。
    网店第1年
    35097984
  • 直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分. 现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……). [1] 数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用. 具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学). 就纵度而言,在数学各自领域上的探索亦越发深入.
    数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果.现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。
    任何特定环境下的方法很大程度上由相关的教育系统所设定的目标所决定。教授数学的方法包括: 经典教育 -中世纪的经典教育大纲中的数学教育通常基于欧几里得原本,它被作为演绎推理的范式来教授。 死记硬背 - 通过重复和记忆来教授数学结果,定义和概念。通常用于乘法表。 习题 - 通过完成大量同类的练习来传授数学技巧,例如加带分数或者解二次方程。例如,古氏积木(Cuisenaire rods)来教授分数。 问题求解- 通过给学生无标准答案,不同寻常的,和有时候无解的问题来培养数学的智力,创造力和启发式思考。问题的范围可以从词问题到像国际数学奥林匹克竞赛这样的国际数学竞赛问题。 新数学 - 一种专注于集合论这样的抽象概念而不是实际应用的教授数学的方法。 历史方法 - 教授在一个历史,社会和文化背景下数学的发展过程。比纯粹抽象的方式提供了更多的人文乐趣。 这些方法不是所有的,而且任何数学教育系统很可能包含很多不同的方法。
    帮助学生打好共同数学基础 ICME 9的大专数学教育组和大学数学教育组分别研究高等数学教育中广泛的问题。由于大学院系专业繁多,各专业对数学的要求不一,大会主要讨论大学公共基础课的高等数学教学问题。与会者认为,随着中小学教学改革的深入展开,随着大学教育系统的改变,大学数学教学改革势在必行:(1)大学数学应该为学生学习专业课打下良好基础;(2)大学数学应该培养学生良好的思维品质和学习能力;(3)大学数学要为学生未来专业工作提供数学工具;(4)当前的大学数学教学赶不上中小学的发展,因此,大学数学教学方法必须改革。 日本专家认为,日本大学数学进入了紧要关头。其理由有三个:首先,大学一年级学生数学知识和能力水平在严重下降;其二,大学教育系统正在改变,数学教学尚未适应这个变化;第三,大学数学教育与学生未来的专业学习配合不当,甚至相互脱节。为此,日本文部省组织专家进行了深入的调查,并提出了改革方案。
    网店第1年
    35097984
  • 空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常著名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。
    绝大部分的历史时期,数学教育的标准是地域性的,由不同的学校或教师根据学 《从数学教育到教育数学》 《从数学教育到教育数学》 生的水平和兴趣来设置。 在现代,有一种趋势是建立地区或国家标准,通常隶属于更广泛的学校教学大纲。例如在英国,数学教育的标准是英国国家教育大纲的一部分。在美国,美国数学教师国家委员会制定了一系列文档,最近的有学校数学的原则和标准,为学校数学的总体目标达成了一致。更具体的教学标准一般在州一级制定 - 譬如在加利福尼亚,加州教育理事会为数学教育制定了标准
    中国数学发展史 mathematics eduction in China 有悠久的历史,早在西周时期,数学已作为“六艺”之一,成为专门的学问,唐初国子监增设算学馆,设有算学博士和助教,使用李淳风等编纂注释的《算经十书》为教材。明代算科考试亦以这些教材为准(见中国数学史)。 近现代的初等数学教育,可以说是在晚清(1903)颁布癸卯学制,废除科举,兴办小学、中学后才开始的。当时小学设算术课,中学设数学课(包括算术、代数、几何、三角、簿记)。民国初年(1912~1913)公布壬子癸丑学制,中学由五年改为四年,数学课程不再讲授簿记。执行时间最久的是1922年公布的壬戌学制,将小学、中学都改为六年,各分初高两级,初小四年,高小二年,初高中皆三年。初中数学讲授算术、代数、平面几何,高中数学讲授平面三角、高中几何、高中代数、平面解析几何(高中曾分文理两科,部分理科加授立体解析几何和微积分初步),这个学制基本沿用到1949年。中华人民共和国成立后,中小学的教育进行了改革,学制大都改为小学六年,初高中各三年,初中逐步取消算术课。50年代高中数学一度停授平面解析几何,后又恢复并增授微积分初步以及概率论和电子计算机的初步知识。 幼儿数学教育 幼儿数学教育 中国近代高等数学教育,也是从清朝末年开始的。1862年洋务派创办的京师同文馆,本来是个外语学校,从1866年增设天文算学馆,1867年招生,开始向中等专科学校转变。1868年聘李善兰为总教习,设代数、几何(原本)、平面和球面三角、微积分等课程,可以认为,这是向中国学生较系统地传授西方高等数学基础知识的开始。1898年戊戌变法中,京师大学堂成立,这是中国近代第一个国立大学。1902年,同文馆并入京师大学堂。
    中华人民共和国成立后,在人民政府的集中领导下,采用了苏联的教育制度,数学教育也经历了巨大变革。经过1952年的院系调整,师范院校和综合大学都设立了数学系,全国有了统一制订的教学计划和教学大纲,广泛引进了苏联教材,各校必修课的设置及其内容规范化了,保证了一定水平。数学基础课一般都设了习题课,对学生的帮助更为具体。师范院校的数学专业在基础课的设置上,与综合大学的数学专业相近,并增设教育学、心理学、数学教学法及教育实习等课和教学环节。综合大学的数学专业一度在最后一年至一年半的时间里分为若干专门组,如代数、数论、几何、拓扑、函数论、泛函分析、微分方程、概率论与数理统计等,学生能接触到一些现代数学的前沿工作。后来专门组撤销,课程更多样化了。
    网店第1年
    35097984
  • 只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡。——希尔伯特(David Hilbert 1862—1943) 问题是数学的心脏.——保罗·哈尔莫斯(Paul Halmos 1916—2006)   时间是个常数,但对勤奋者来说,是个“变数”。用“分”来计算时间的人比用“小时”来计算时间的人时间多59倍。——雷巴柯夫 中国人物 祖冲之 祖冲之(10张) 事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已.又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣.——刘徽 迟疾之率,非出神怪,有形可检,有数可推.——祖冲之(429—500) 新的数学方法和概念,常常比解决数学问题本身更重要.——华罗庚 数学表达上准确简洁、逻辑上抽象普适、形式上灵活多变,是宇宙交际的理想工具.——周海中 [4] 科学需要实验.但实验不能绝对精确.如有数学理论,则全靠推论,就完全正确了.这科学不能离开数学的原因.
    P(多项式算法)问题对 NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。 与此类似的是,如果某人告诉你,数字13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。
    霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
    任何特定环境下的方法很大程度上由相关的教育系统所设定的目标所决定。教授数学的方法包括: 经典教育 -中世纪的经典教育大纲中的数学教育通常基于欧几里得原本,它被作为演绎推理的范式来教授。 死记硬背 - 通过重复和记忆来教授数学结果,定义和概念。通常用于乘法表。 习题 - 通过完成大量同类的练习来传授数学技巧,例如加带分数或者解二次方程。例如,古氏积木(Cuisenaire rods)来教授分数。 问题求解- 通过给学生无标准答案,不同寻常的,和有时候无解的问题来培养数学的智力,创造力和启发式思考。问题的范围可以从词问题到像国际数学奥林匹克竞赛这样的国际数学竞赛问题。 新数学 - 一种专注于集合论这样的抽象概念而不是实际应用的教授数学的方法。 历史方法 - 教授在一个历史,社会和文化背景下数学的发展过程。比纯粹抽象的方式提供了更多的人文乐趣。 这些方法不是所有的,而且任何数学教育系统很可能包含很多不同的方法。
    网店第1年
    35097984
  • 数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思.数学术语亦包括如同胚及可积性等专有名词.但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”.


    严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或"证明",而这情形在历史上曾出现过许多的例子.在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理。数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨.


  • 我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前,数学是用文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于人们而言更便于操作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。
    许多科学的基本观念,往往需要数学观念来表示.所以数学家有饭吃了,但不能得诺贝尔奖,是自然的.数学中没有诺贝尔奖,这也许是件好事.诺贝尔奖太引人注目,会使数学家无法专注于自己的研究.——陈省身 现代高能物理到了量子物理以后,有很多根本无法做实验,在家用纸笔来算,这跟数学家想样的差不了多远,所以说数学在物理上有着不可思议的力量.——丘成桐 看书和写作业要注意顺序.我们要养成良好的学习方法,尽量回家后先复习一下当天学习的知识,特别是所记的笔记要重点关照,然后再写作业,这样效果更佳.
    许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。
    庞加莱(Poincare)猜想(已经被证明) 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
    网店第1年
    35097984
  • 直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分. 现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……). [1] 数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用. 具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学). 就纵度而言,在数学各自领域上的探索亦越发深入.
    从19世纪20年代后期起,浙江大学数学系就开始采用讨论班的形式来培养学生独立工作能力和从事科研工作能力;其他如西南联合大学也曾采用过。到了50年代,结合专门组教学,这种作法得到进一步推广,各主要大学数学系都逐步开展了科学研究工作,并招收了研究生。由于国内培养的数学人才不断增加,教师队伍逐渐改变了过去主要依靠归国留学生的局面,由教育部组织编写的以及个人编写的教材也逐渐取代了外国教材,它们一般较结合本国实际。1957年以后,一些学校开展了应用数学方面的研究,增设了计算数学专业或专门组,开设了如运筹学等课程,概率统计等课程的开设更为普遍,培养了有关方面的人才。理、工等科系的学生,一般也学习一定份量的高等数学课程。 以上情况表明,中华人民共和国成立以后,数学教育在数量和质量上都发生了显著变化,逐步发展提高。但也存在一些问题,如:必修课太重,不少课程要求过专过高,教学制度又过分要求划一,未能因材施教,导致学生学习负担过重,基础不牢,加以对理论和实践有时理解得不全面,工作中有摇摆,使数学教育的发展受到影响。尽管如此,这段时期的数学教育成就还是很大的。一般数学人才的培养已能立足于国内了。
    从1966年开始的“文化大革命”,数学教育受到严重挫折。1977年后,经济、政治、科学、教育各方面都先后提出了改革的方针和措施;实事求是精神的发扬,学校自主权的加强,教学制度的灵活,选修课的增加,使各校有条件分别发扬其优势,形成自己的特色。由于明确提出了“大力发展应用研究,重视基础研究”的方针,纯粹数学和应用数学各得其所,长期存在的关于理论和实践关系的认识分歧终于澄清。除了基础数学、计算数学和应用数学专业外,综合大学和师范院校还设了数理逻辑、控制理论、系统科学、信息科学、概率论与数理统计、运筹学、经济数学等专业,许多工科院校也建立了应用数学专业。高等学校理、工、农、医以至经济、管理方面等科系的学生,都学习比过去更多的高等数学方面的课程。
    帮助学生打好共同数学基础 ICME 9的大专数学教育组和大学数学教育组分别研究高等数学教育中广泛的问题。由于大学院系专业繁多,各专业对数学的要求不一,大会主要讨论大学公共基础课的高等数学教学问题。与会者认为,随着中小学教学改革的深入展开,随着大学教育系统的改变,大学数学教学改革势在必行:(1)大学数学应该为学生学习专业课打下良好基础;(2)大学数学应该培养学生良好的思维品质和学习能力;(3)大学数学要为学生未来专业工作提供数学工具;(4)当前的大学数学教学赶不上中小学的发展,因此,大学数学教学方法必须改革。 日本专家认为,日本大学数学进入了紧要关头。其理由有三个:首先,大学一年级学生数学知识和能力水平在严重下降;其二,大学教育系统正在改变,数学教学尚未适应这个变化;第三,大学数学教育与学生未来的专业学习配合不当,甚至相互脱节。为此,日本文部省组织专家进行了深入的调查,并提出了改革方案。
    网店第1年
    35097984
  • 算法初步

    (约12课时)

    (1)算法的含义、程序框图

    ①通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义。

    ②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中(如三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。

    (2)基本算法语句:经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。

    (3)通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

    统计

    (约16课时)

    (1)随机抽样

    ①能从现实生活或其他学科中提出具有一定价值的统计问题。

    ②结合具体的实际问题情境,理解随机抽样的必要性和重要性。

    ③在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。

    ④能通过试验、查阅资料、设计调查问卷等方法收集数据。

    (2)用样本估计总体

    ①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会它们各自的特点。

    ②通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。

    ③能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释。

    ④在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。

    ⑤会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;能通过对数据的分析为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异。

    ⑥形成对数据处理过程进行初步评价的意识。

    (3)变量的相关性

    ①通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。

    ②经历用不同估算方法描述两个变量线性相关的过程。知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。


  • 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果.现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。
    庞加莱(Poincare)猜想(已经被证明) 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
    基础数学是多数古文明的教育系统的一部分,包括古希腊,罗马帝国,吠陀社会和古埃及。在多数情况下,只有足够高地位,财富或等级的男性孩童才能接受正规教育。 数学教育图书 数学教育图书 在柏拉图把文科分成三学科和四学科的划分中,四学科包括数学的算术和几何领域。这个结构在中世纪欧洲所发展的经典教育的体系得到了延续。几何的教育基于欧几里得的原本。商业的学徒,如石匠,商人和借贷者需要学习和他们的行业相关的这种实用数学。 第一本英语的数学教科书由Robert Recorde出版,从1540年的艺术的基础(The Grounde of Artes)开始。 在文艺复兴时期,数学的学术地位下降了,因为它和手工业和贸易紧密相关。虽然在欧洲的大学里继续教授数学,它被视为自然哲学,形而上学和道德哲学的辅助。 这个趋势在十七世纪得到某种逆转,阿伯丁大学在1613年建立数学主席职位,随后有牛津大学在1619年建立几何主席职位和剑桥大学在1662年设立的卢卡逊教授。但是,数学一般不在大学之外教授。例如牛顿在他在1661年进入剑桥三一学院之前没有受过正规数学教育。 在十八世纪和十九世纪,工业革命导致城市人口大量增加。基本的数字技能,如描述时间,数钱和简单算术,称为新的城市生活的基本能力。在新的公共教育系统中,数学成了从幼年开始的课程的中心部分。 到二十世纪,数学成了所有发达国家的核心课程的一部分。但是,多样和变化着的关于数学教育的目的的思想导致所采用的内容和方法几乎没有任何整体上的一致性。
    中国高等学校是全国科学研究的一个重要的方面军,数学研究也是这样,特别是近十年来有了较全面的发展与提高,一些大学还设立了数学研究所。高级数学人才的培养也随之逐渐能立足于国内,正式建立了学位制。数学方面已在基础数学、计算数学、应用数学、概率论与数理统计、运筹学与控制论、数学教育与数学史等方面培养博士研究生。1983年在中国第一批18位接受本国博士学位的研究生中,获得数学博士学位的就有12人。必须指出,中国科学院数学各方面研究所,在培育人才,包括培养研究生方面,也起了重要作用。1966年以前曾向少数国家派遣了数学方面的留学生和进修教师,1978年起派出人员大量增加。还邀请了许多国外数学家前来讲学,中国数学家出国讲学和参加国际数学学术会议的就更多了。中外学术交流对中国数学事业的繁荣起着很好的作用。
    网店第1年
    35097984
  • 调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
    学习被动,缺乏计划性。 很多同学升入初中后,观念还没有转变过来,还是有很强的依赖性。没有学会自主学习。说白了就是对于数学学习不主动,没有计划性。上课前不预习,对于课堂上要讲的新知识不了解忙于记笔记。听课没有目的性。
    学习方法不得当。 老师在课堂上的讲解一般会循序渐进,剖析概念内涵,会着重突出重点难点以及中心思想。但有的学生上课听讲不专心,不会抓重点,重要的不重要的记了一大堆,丢了西瓜捡了芝麻。课后由不能及时总结归纳。导致做作业机械模仿。锻炼价值大打折扣。违背了作业的本质。从而收效甚微。
    数学是所有学科里面逻辑性最强的一个。因此,学会思考,对于学好数学有着至关重要的意义。如果不善于去思考总结类比,那么只是相当于背书死记硬背。平时做题时要学会思考题中所包含的知识点的运用,题与题之间的异同、出题人出题的考察目的等。通过思考整合知识点,逐渐提炼出解题的思路,以后再解此类型的题就会游刃有余。
  • 庞加莱(Poincare)猜想(已经被证明) 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
    数学教育是研究数学教学的实践和方法的学科。而且,数学教育工作者也关注促进这种实践的工具及其研究的发展。数学教育是现代社会激烈争论的主题之一。这个术语有个歧义,它既指各地的教室里的实践,也指新生的一个学科,它有自己的期刊,会议,等等。这方面最重要的国际组织是数学教育国际委员会(the International Commission on Mathematical Instruction)。
    绝大部分的历史时期,数学教育的标准是地域性的,由不同的学校或教师根据学 《从数学教育到教育数学》 《从数学教育到教育数学》 生的水平和兴趣来设置。 在现代,有一种趋势是建立地区或国家标准,通常隶属于更广泛的学校教学大纲。例如在英国,数学教育的标准是英国国家教育大纲的一部分。在美国,美国数学教师国家委员会制定了一系列文档,最近的有学校数学的原则和标准,为学校数学的总体目标达成了一致。更具体的教学标准一般在州一级制定 - 譬如在加利福尼亚,加州教育理事会为数学教育制定了标准
    任何特定环境下的方法很大程度上由相关的教育系统所设定的目标所决定。教授数学的方法包括: 经典教育 -中世纪的经典教育大纲中的数学教育通常基于欧几里得原本,它被作为演绎推理的范式来教授。 死记硬背 - 通过重复和记忆来教授数学结果,定义和概念。通常用于乘法表。 习题 - 通过完成大量同类的练习来传授数学技巧,例如加带分数或者解二次方程。例如,古氏积木(Cuisenaire rods)来教授分数。 问题求解- 通过给学生无标准答案,不同寻常的,和有时候无解的问题来培养数学的智力,创造力和启发式思考。问题的范围可以从词问题到像国际数学奥林匹克竞赛这样的国际数学竞赛问题。 新数学 - 一种专注于集合论这样的抽象概念而不是实际应用的教授数学的方法。 历史方法 - 教授在一个历史,社会和文化背景下数学的发展过程。比纯粹抽象的方式提供了更多的人文乐趣。 这些方法不是所有的,而且任何数学教育系统很可能包含很多不同的方法。
    网店第1年
    35097984
  • (1)算法的含义、程序框图

    ①通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义。

    ②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中(如三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。

    (2)基本算法语句:经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。

    (3)通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。


  • 空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常著名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。
    数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的有理和无理数. 另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较.
    从1966年开始的“文化大革命”,数学教育受到严重挫折。1977年后,经济、政治、科学、教育各方面都先后提出了改革的方针和措施;实事求是精神的发扬,学校自主权的加强,教学制度的灵活,选修课的增加,使各校有条件分别发扬其优势,形成自己的特色。由于明确提出了“大力发展应用研究,重视基础研究”的方针,纯粹数学和应用数学各得其所,长期存在的关于理论和实践关系的认识分歧终于澄清。除了基础数学、计算数学和应用数学专业外,综合大学和师范院校还设了数理逻辑、控制理论、系统科学、信息科学、概率论与数理统计、运筹学、经济数学等专业,许多工科院校也建立了应用数学专业。高等学校理、工、农、医以至经济、管理方面等科系的学生,都学习比过去更多的高等数学方面的课程。
    中国高等学校是全国科学研究的一个重要的方面军,数学研究也是这样,特别是近十年来有了较全面的发展与提高,一些大学还设立了数学研究所。高级数学人才的培养也随之逐渐能立足于国内,正式建立了学位制。数学方面已在基础数学、计算数学、应用数学、概率论与数理统计、运筹学与控制论、数学教育与数学史等方面培养博士研究生。1983年在中国第一批18位接受本国博士学位的研究生中,获得数学博士学位的就有12人。必须指出,中国科学院数学各方面研究所,在培育人才,包括培养研究生方面,也起了重要作用。1966年以前曾向少数国家派遣了数学方面的留学生和进修教师,1978年起派出人员大量增加。还邀请了许多国外数学家前来讲学,中国数学家出国讲学和参加国际数学学术会议的就更多了。中外学术交流对中国数学事业的繁荣起着很好的作用。
    网店第1年
    35097984
  • 提高学习效率并非一朝一夕之事,需要长期的探索和积累。前人的经验是可以借鉴的,但必须充分结合自己的特点。影响学习效率的因素,有学习之内的,但更多的因素在学习之外。首先要养成良好的学习习惯,合理利用时间,另外还要注意"专心、用心、恒心"等基本素质的培养,对于自身的优势、缺陷等更要有深刻的认识。总之,“世上无难事,只怕有心人。”

    除了以上所说,学习的方法与态度,以及考试的心态都是很重要的因素,很多人在考试时总考不出自己的实际水平,拿不到理想的分数,究其原因,就是心理素质不过硬,考试时过于紧张的缘故,还有就是把考试的分数看得太重,所以才会导致考试失利,你要学会换一种方式来考虑问题,你要学会调整自己的心态,人们常说,考试考得三分是水平,七分是心理,过于地追求往往就会失去,就是这个缘故;不要把分数看得太重,即把考试当成一般的作业,理清自己的思路,认真对付每一道题,你就一定会考出好成绩的;你要学会超越自我,这句话的意思就是,心里不要总想着分数、总想着名次;只要这次考试的成绩比上一次考试的成绩有所提高,哪怕是只高一分,那也是超越了自我;这也就是说,不与别人比成绩,就与自己比,这样你的心态就会平和许多,就会感到没有那么大的压力,学习与考试时就会感到轻松自如的;你试着按照这种方式来调整自己,你就会发现,在不经意中,你的成绩就会提高许多;


  • 正式主义定义用其符号和操作规则来确定数学。 Haskell Curry将数学简单地定义为“正式系统的科学”。[33]正式系统是一组符号,或令牌,还有一些规则告诉令牌如何组合成公式。在正式系统中,公理一词具有特殊意义,与“不言而喻的真理”的普通含义不同。在正式系统中,公理是包含在给定的正式系统中的令牌的组合,而不需要使用系统的规则导出。
    许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。
    绝大部分的历史时期,数学教育的标准是地域性的,由不同的学校或教师根据学 《从数学教育到教育数学》 《从数学教育到教育数学》 生的水平和兴趣来设置。 在现代,有一种趋势是建立地区或国家标准,通常隶属于更广泛的学校教学大纲。例如在英国,数学教育的标准是英国国家教育大纲的一部分。在美国,美国数学教师国家委员会制定了一系列文档,最近的有学校数学的原则和标准,为学校数学的总体目标达成了一致。更具体的教学标准一般在州一级制定 - 譬如在加利福尼亚,加州教育理事会为数学教育制定了标准
    帮助学生打好共同数学基础 ICME 9的大专数学教育组和大学数学教育组分别研究高等数学教育中广泛的问题。由于大学院系专业繁多,各专业对数学的要求不一,大会主要讨论大学公共基础课的高等数学教学问题。与会者认为,随着中小学教学改革的深入展开,随着大学教育系统的改变,大学数学教学改革势在必行:(1)大学数学应该为学生学习专业课打下良好基础;(2)大学数学应该培养学生良好的思维品质和学习能力;(3)大学数学要为学生未来专业工作提供数学工具;(4)当前的大学数学教学赶不上中小学的发展,因此,大学数学教学方法必须改革。 日本专家认为,日本大学数学进入了紧要关头。其理由有三个:首先,大学一年级学生数学知识和能力水平在严重下降;其二,大学教育系统正在改变,数学教学尚未适应这个变化;第三,大学数学教育与学生未来的专业学习配合不当,甚至相互脱节。为此,日本文部省组织专家进行了深入的调查,并提出了改革方案。
    网店第1年
    35097984
  • 家教形式


    〔1〕教师上学生家一对一或多人(一般不超过4人)


    〔2〕在教学点设精品小班


    〔3〕重点推荐形式:


    (4)远程一对一辅导(价格一般在10元到100元/小时之间);


    全程托管式家教辅导


    “全程托管式辅导模式”简称“四步法”


    第一步:教育咨询师和教育心理专家对学生进行综合学习测评,为每位孩子制定一套个性化的学习方案。


    第二步:根据学习辅导方案,为学生匹配合适的专职教师 + 重点校骨干教师;同时为学生配置一个“ 互动学习平台”。


    第三步:周六周日教师面对面重点辅导 ,周一至周五通过“互动教学白板”教师天天互动辅导,让学习难题不过夜。


    第四步:教务处按照学生的学习方案,实施教学目标管理,每周指导监督,查漏补缺、由点及面、专题提高;学生学习效果,快速提高学生学习成绩。


  • 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果.现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。
    纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶—斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。
    任何特定环境下的方法很大程度上由相关的教育系统所设定的目标所决定。教授数学的方法包括: 经典教育 -中世纪的经典教育大纲中的数学教育通常基于欧几里得原本,它被作为演绎推理的范式来教授。 死记硬背 - 通过重复和记忆来教授数学结果,定义和概念。通常用于乘法表。 习题 - 通过完成大量同类的练习来传授数学技巧,例如加带分数或者解二次方程。例如,古氏积木(Cuisenaire rods)来教授分数。 问题求解- 通过给学生无标准答案,不同寻常的,和有时候无解的问题来培养数学的智力,创造力和启发式思考。问题的范围可以从词问题到像国际数学奥林匹克竞赛这样的国际数学竞赛问题。 新数学 - 一种专注于集合论这样的抽象概念而不是实际应用的教授数学的方法。 历史方法 - 教授在一个历史,社会和文化背景下数学的发展过程。比纯粹抽象的方式提供了更多的人文乐趣。 这些方法不是所有的,而且任何数学教育系统很可能包含很多不同的方法。
    中华人民共和国成立后,在人民政府的集中领导下,采用了苏联的教育制度,数学教育也经历了巨大变革。经过1952年的院系调整,师范院校和综合大学都设立了数学系,全国有了统一制订的教学计划和教学大纲,广泛引进了苏联教材,各校必修课的设置及其内容规范化了,保证了一定水平。数学基础课一般都设了习题课,对学生的帮助更为具体。师范院校的数学专业在基础课的设置上,与综合大学的数学专业相近,并增设教育学、心理学、数学教学法及教育实习等课和教学环节。综合大学的数学专业一度在最后一年至一年半的时间里分为若干专门组,如代数、数论、几何、拓扑、函数论、泛函分析、微分方程、概率论与数理统计等,学生能接触到一些现代数学的前沿工作。后来专门组撤销,课程更多样化了。
    网店第1年
    35097984
  • 家教传统意义上讲是指家庭内道德、礼节的教育,如:这个孩子没家教;某人家的家教很严格等。家教的本来意义是帮助孩子健康成长,教会孩子做人的道理,家教是个体社会化非常重要的途径。


    注:家庭教师不能代替家教。家庭教师的行为不是家教。


    我们坚信:学习是一个简单、持续、循环进步的过程,每一个孩子都能取得大的进步! 授课特色:一对一、精品小班,做适合孩子们的教育。


    授课风格:思路清晰,幽默有趣,浅现易懂,化繁为简。


    教学理念:简单教学、兴趣教学、轻松教学、人文教学、专业教学。


  • 只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡。——希尔伯特(David Hilbert 1862—1943) 问题是数学的心脏.——保罗·哈尔莫斯(Paul Halmos 1916—2006)   时间是个常数,但对勤奋者来说,是个“变数”。用“分”来计算时间的人比用“小时”来计算时间的人时间多59倍。——雷巴柯夫 中国人物 祖冲之 祖冲之(10张) 事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已.又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣.——刘徽 迟疾之率,非出神怪,有形可检,有数可推.——祖冲之(429—500) 新的数学方法和概念,常常比解决数学问题本身更重要.——华罗庚 数学表达上准确简洁、逻辑上抽象普适、形式上灵活多变,是宇宙交际的理想工具.——周海中 [4] 科学需要实验.但实验不能绝对精确.如有数学理论,则全靠推论,就完全正确了.这科学不能离开数学的原因.
    许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。
    任何特定环境下的方法很大程度上由相关的教育系统所设定的目标所决定。教授数学的方法包括: 经典教育 -中世纪的经典教育大纲中的数学教育通常基于欧几里得原本,它被作为演绎推理的范式来教授。 死记硬背 - 通过重复和记忆来教授数学结果,定义和概念。通常用于乘法表。 习题 - 通过完成大量同类的练习来传授数学技巧,例如加带分数或者解二次方程。例如,古氏积木(Cuisenaire rods)来教授分数。 问题求解- 通过给学生无标准答案,不同寻常的,和有时候无解的问题来培养数学的智力,创造力和启发式思考。问题的范围可以从词问题到像国际数学奥林匹克竞赛这样的国际数学竞赛问题。 新数学 - 一种专注于集合论这样的抽象概念而不是实际应用的教授数学的方法。 历史方法 - 教授在一个历史,社会和文化背景下数学的发展过程。比纯粹抽象的方式提供了更多的人文乐趣。 这些方法不是所有的,而且任何数学教育系统很可能包含很多不同的方法。
    一.古埃及数学 埃及是世界上文化发达最早的几个地区之一,位于尼罗河两岸,公元前3200年左右,形成一个统一的国家。尼罗河定期泛滥,淹没全部谷地,水退后,要重新丈量居民的耕地面积。由于这种需要,多年积累起来的测地知识便逐渐发展成为几何学。 公元前2900年以后,埃及人建造了许多金字塔,作为法老的坟墓。从金字塔的结构,可知当时埃及人已懂得不少天文和几何的知识。例如基底直角的误差与底面正方形两边同正北的偏差都非常小。 现今对古埃及数学的认识,主要根据两卷用僧侣文写成的纸草书;一卷藏在伦敦,叫做莱因德纸草书,一卷藏在莫斯科。埃及最古老的文字是象形文字,后来演变成一种较简单的书写体,通常叫僧侣文。除了这两卷纸草书外,还有一些写在羊皮上或用象形文字刻在石碑上和木头上的史料,藏于世界各地。两卷纸草书的年代在公元前1850~前1650年之间,相当于中国的夏代。 埃及很早就用十进记数法,但却不知道位值制,每一个较高的单位是用特殊的符号来表示的。埃及算术主要是加法,而乘法是加法的重复。他们能解决一些一元一次方程的问题,并有等差、等比数列的初步知识。占特别重要地位的是分数算法,即把所有分数都化成单位分数(即分子是 1的分数)的和。莱因德纸草书用很大的篇幅来记载2/n(n从5到101)型的分数分解成单位分数的结果。为什么要这样分解以及用什么方法去分解,到现在还是一个谜。这种繁杂的分数算法实际上阻碍了算术的进一步发展。 纸草书还给出圆面积的计算方法:将直径减去它的1/9之后再平方。计算的结果相当于用 3.1605作为圆周率,不过他们并没有圆周率这个概念。根据莫斯科纸草书,推测他们也许知道正四棱台体积的计算方法。 总之,古代埃及人积累了一定的实践经验,但还没有上升为系统的理论。 二.美索不达米亚数学 西亚美索不达米亚地区(即底格里斯河与幼发拉底河流域)是人类早期文明发祥地之一。一般称公元前19世纪至公元前6世纪间该地区的文化为巴比伦文化,相应的数学属巴比伦数学。这一地区的数学传统上溯至约公元前二千年的苏美尔文化,后续至公元1世纪基督教创始时期。对巴比伦数学的了解,依据于19世纪初考古发掘出的楔形文字泥板,有约300块是纯数学内容的,其中约200块是各种数表,包括乘法表、倒数表、平方和立方表等。大约在公元前1800~前1600年间,巴比伦人已使用较系统的以60为基数的数系(包括60进制小数)。由于没有表示零的记号,这种记数法是不完善的。 巴比伦人的代数知识相当丰富,主要用文字表达,偶尔使用记号表示未知量。 在公元前1600年前的一块泥板上,记录了许多组毕达哥拉斯三元数组(即勾股数组)。据考证,其求法与希腊人丢番图的方法相同。巴比伦人还讨论了某些三次方程和可化为二次方程的四次方程。 巴比伦的几何属于实用性质的几何,多采用代数方法求解。他们有三角形相似及对应边成比例的知识。用公式 (с为圆的周长)求圆面积,相当于取π=3。 巴比伦人在公元前 3世纪已较频繁地用数学方法记载和研究天文现象,如记录和推算月球与行星的运动,他们将圆周分为360度的做法一直沿用至今。 三.玛雅数学 对于玛雅数学的了解,主要来自一些残剩的玛雅时代石刻。对这些石刻上象形文字的释读表明:玛雅人很早就创造了位值制的记数系统,具体记数方式又分两种:第一种叫横点记数法;第二种叫头形记数法。横点记数法以一点表示1,以一横表示5,以一介壳状 表示0,但不是0符号。 迄今所知道的玛雅数学知识就是如此,其中只显示加法和进位两种。关于形的认识,只能从玛雅古建筑中体会到一些。这些古建筑从外形看都很整齐划一,可以判断当时玛雅人对几何图形已有一定的知识。 四.印度数学 印度数学的数学发展可以划分为三个重要时期,首先是雅利安人入侵以前的达罗毗荼人时期,史称河谷文化;随后是吠陀时期;其次是悉檀多时期。由于河谷文化的象形文字至今不能解读,所以对这一时期印度数学的实际情况了解得很少。 印度数学最早有文字记录的是吠陀时代,其数学材料混杂在婆罗门教和印度教的经典《吠陀》当中,年代很不确定,今人所考定的年代出入很大,其年代最早可上溯到公元前10世纪,最晚至公元前3世纪。 由几何计算导致了一些求解一、二次代数方程问题,印度用算术方法给出求解公式。 耆那教的经典由宗教原理、数学原理、算术和天文等几部分构成,流传下来的原始经典较少,不过流传一些公元前5世纪至公元后2世纪的注释。 公元773年,印度数码传入阿拉伯国家,后来欧洲人通过阿拉伯人接受了,成为今天国际通用的所谓阿拉伯数码。这种印度数码与记数法成为近世欧洲科学赖以进步的基础。中国唐朝印度裔天文历学家瞿昙悉达于718年翻译的印度历法《九执历》当中也有这些数码,可是未被中国人所接受。 由于印度屡被其他民族征服,使印度古代天文数学受外来文化影响较深,除希腊天文数学外,也不排除中国文化的影响,然而印度数学始终保持东方数学以计算为中心的实用化特色。与其算术和代数相比,印度人在几何方面的工作显得十分薄弱,最具特色与影响的成就是其不定分析和对希腊三角术的推进。
    网店第1年
    35097984
  • 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
    学习被动,缺乏计划性。 很多同学升入初中后,观念还没有转变过来,还是有很强的依赖性。没有学会自主学习。说白了就是对于数学学习不主动,没有计划性。上课前不预习,对于课堂上要讲的新知识不了解忙于记笔记。听课没有目的性。
    学习方法不得当。 老师在课堂上的讲解一般会循序渐进,剖析概念内涵,会着重突出重点难点以及中心思想。但有的学生上课听讲不专心,不会抓重点,重要的不重要的记了一大堆,丢了西瓜捡了芝麻。课后由不能及时总结归纳。导致做作业机械模仿。锻炼价值大打折扣。违背了作业的本质。从而收效甚微。
    高中数学的学习,首要的是要形成思维能力。高中数学的知识与公式量都并不大,然而题目的深度可以令人望洋兴叹。而且随着新课标的不断深入,各种新题型层出不穷,有些甚至有高等数学的背景。总结起来,其实这正是新课标对于学生的要求,即不要只停留在书本内容,而是要形成思维的体系,对于复杂的问题,要有自己的观点与看法。这其实才是真正应该养成的学习习惯。
  • 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果.现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。
    空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常著名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。
    数学教育是一种社会文化现象,其社会性决定了数学教育要与时俱进,不断创新.数学教育中的教育目标、教育内容、教育技术等一系列问题都会随着社会的进步而不断变革与发展.数学教育改革的背景,至少有来自于九个方面的考虑:知识经济、社会关系、家庭压力、国际潮流、考试改革、科教兴国、深化素质教育、普及义务教育、科技进步。
    绝大部分的历史时期,数学教育的标准是地域性的,由不同的学校或教师根据学 《从数学教育到教育数学》 《从数学教育到教育数学》 生的水平和兴趣来设置。 在现代,有一种趋势是建立地区或国家标准,通常隶属于更广泛的学校教学大纲。例如在英国,数学教育的标准是英国国家教育大纲的一部分。在美国,美国数学教师国家委员会制定了一系列文档,最近的有学校数学的原则和标准,为学校数学的总体目标达成了一致。更具体的教学标准一般在州一级制定 - 譬如在加利福尼亚,加州教育理事会为数学教育制定了标准
    网店第1年
    35097984
  •   要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

      学习被动,缺乏计划性。

      很多同学升入初中后,观念还没有转变过来,还是有很强的依赖性。没有学会自主学习。说白了就是对于数学学习不主动,没有计划性。上课前不预习,对于课堂上要讲的新知识不了解忙于记笔记。听课没有目的性。

      学习方法不得当。

      老师在课堂上的讲解一般会循序渐进,剖析概念内涵,会着重突出重点难点以及中心思想。但有的学生上课听讲不专心,不会抓重点,重要的不重要的记了一大堆,丢了西瓜捡了芝麻。课后由不能及时总结归纳。导致做作业机械模仿。锻炼价值大打折扣。违背了作业的本质。从而收效甚微。

      除了课上进行针对性训练,对于课下的习惯也要进行纠正。对于错题,无论学习多忙,都要进行整理,整理的方式可以因课后时间长短而定,最起码也可以进行标注和索引,考前再次翻阅,形成闭环。如果尚有时间,可以用错题本记录错题,但要注意错题本不能流于形式,既不能过于华丽(浪费时间),也不能过于简单(没有作用),需要记录的最关键点,是思维卡壳或思路漏洞的所在。只有看到错题本能让自己想起当初错在何处,才有改进的可能。

  • 为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托尔(1845—1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献。 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论、测度论、拓扑学及数理科学中必不可少的工具。20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”。
    数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果.现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。
    为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托尔(1845—1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献。 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论、测度论、拓扑学及数理科学中必不可少的工具。20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”。
    庞加莱(Poincare)猜想(已经被证明) 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
    网店第1年
    35097984