联系方式
  • 公司: 深圳精成学社数学方老师
  • 地址: 深圳福田区百花园紫荆阁
  • 联系: 方老师
  • 手机: 13427980436
  • 邮箱: 365808458@qq.com
  • 微信: 13427980436
  •  
  • 本站共被浏览过 23982 次

产品信息

更多...

深圳福田暑期数学补习班,师资强大

2019-09-10 04:28:01 66次浏览
价 格:面议

数理逻辑

数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果.现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。

黎曼(Riemann)假设

有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

贝赫(Birch)和斯维讷通—戴尔(Swinnerton-Dyer)猜想

数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。

中国高等学校是全国科学研究的一个重要的方面军,数学研究也是这样,特别是

快乐的幼儿数学教育

快乐的幼儿数学教育

近十年来有了较全面的发展与提高,一些大学还设立了数学研究所。高级数学人才的培养也随之逐渐能立足于国内,正式建立了学位制。数学方面已在基础数学、计算数学、应用数学、概率论与数理统计、运筹学与控制论、数学教育与数学史等方面培养博士研究生。1983年在中国第一批18位接受本国博士学位的研究生中,获得数学博士学位的就有12人。必须指出,中国科学院数学各方面研究所,在培育人才,包括培养研究生方面,也起了重要作用。1966年以前曾向少数国家派遣了数学方面的留学生和进修教师,1978年起派出人员大量增加。还邀请了许多国外数学家前来讲学,中国数学家出国讲学和参加国际数学学术会议的就更多了。中外学术交流对中国数学事业的繁荣起着很好的作用。